精英家教网 > 高中数学 > 题目详情
已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=9.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)证明
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
<1.
分析:(1)设等差数列{log2(an-1)}的公差为d.根据a1和a3的值求得d,进而根据等差数列的通项公式求得数列{log2(an-1)}的通项公式,进而求得an
(2)把(1)中求得的an代入
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
中,进而根据等比数列的求和公式求得
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=1-
1
2n
原式得证.
解答:(I)解:设等差数列{log2(an-1)}的公差为d.
由a1=3,a3=9得2(log22+d)=log22+log28,即d=1.
所以log2(an-1)=1+(n-1)×1=n,即an=2n+1.
(II)证明:因为
1
an+1-an
=
1
2n+1-2n
=
1
2n

所以
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=
1
21
+
1
22
+
1
23
+…+
1
2n
=
1
2 
-
1
2n
×
1
2
1-
1
2
=1-
1
2n
<1,
即得证.
点评:本题主要考查了等差数列的通项公式.属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
lim
n→∞
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)=(  )
A、2
B、
3
2
C、1
D、
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a3=9
(1)求数列{an}的通项公式;
(2)求使
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
2012
2013
成立的最小正整数n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{log2(an-1)}(n∈N+)为等差数列,且a1=3,a2=5,则
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•抚州模拟)已知数列{log2(an-1)}(n∈N*)为等差数列,且a1=3,a2=5,则
lim
n→∞
(
1
a2-a1
+
1
a3-a2
+…+
1
an+1-an
)
=
1
1

查看答案和解析>>

同步练习册答案