精英家教网 > 高中数学 > 题目详情
为了构建和谐社会建立幸福指标体系,某地区决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).
相关人员数 抽取人数
公务员 32 m
教师 16 n
自由职业者 64 8
(Ⅰ)求研究小组的总人数;
(Ⅱ)若从研究小组的公务员和教师中随机选3人撰写研究报告,求其中恰好有1人来自教师的概率.
考点:古典概型及其概率计算公式,分层抽样方法
专题:概率与统计
分析:(Ⅰ)根据分层抽样得到关于n,m的方程解得即可,
(Ⅱ)一一列举出所有满足条件的基本事件,找到满足恰好有1人来自教师的基本事件,利用古典概型求出其概率.
解答: 解析:(Ⅰ)依题意
64
8
=
16
n
=
32
m
.解得m=4,n=2,
研究小组的总人数为4+2+8=14(人).
(Ⅱ)设研究小组中为教师a1,a2,公务员为b1,b2,b3,b4,从中随机选3人,不同的选取结果有:a1a2b1,a1a2b2,a1a2b3,a1a2b4;a1b1b2,a1b1b3,a1b1b4,a1b2b3,a1b2b4,a1b3b4,a2b1b2,a2b1b3,a2b1b4,a2b2b3,a2b2b4,a2b3b4,b2b3b4,b1b3b4,b1b2b4,b1b2b3共20种.
其中恰好有1人来自教师的结果有:a1b1b2,a1b1b3,a1b1b4,a1b2b3,a1b2b4,a1b3b4,a2b1b2,a2b1b3,a2b1b4,a2b2b3,a2b2b4,a2b3b4,共12种.
所以恰好有1人来自教师的概率为P=
12
20
=
3
5
点评:本题主要考查分层抽样和古典概型问题的概率的求法,关键是要一一列举所有满足条件的基本事件,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

己知定义在R上的函数y=f(x)满足f(x)=f(2-x),且当x≠1时,其导函数f′(x)满足f′(x)>xf′(x),若a∈(1,2),则(  )
A、f(log2a)<f(2a)<f(2)
B、f(2a)<f(2)<f(log2a)
C、f(log2a)<f(2)<f(2a
D、f(2)<f(log2a)<f(2a

查看答案和解析>>

科目:高中数学 来源: 题型:

某人射击一次,其中命中7~10环的概率表:
命中环数 7 8 9 10
概率 0.32 0.28 0.18 0.12
(1)求射击一次,至少命中8环的概率;
(2)求射击一次,命中的环数不到9环的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}和{bn}满足:a1=λ,an+1=
2
3
an+n-4,bn=(-1)n(an-3n+21),其中λ为实数,n为正整数.
(1)对任意实数λ,求证:a1,a2,a3不成等比数列;
(2)试判断数列{bn}是否为等比数列,并证明你的结论;
(3)设Sn为数列{bn}的前n项和.是否存在实数λ,使得对任意正整数n,都有Sn>-12?若存在,求λ的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cos(2x-
π
3
),cos(
π
4
+x))
b
=(1,-2sin(
π
4
+x))
f(x)=
a
b

(Ⅰ)求f(x)的最小正周期;
(Ⅱ)若A为等腰三角形ABC的一个底角,求f(A)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(sinx,cosx),
b
=(6sinx+cosx,7sinx-2cosx).设函数f(x)=
a
b

(Ⅰ)求函数f(x)的最大值及此时x的取值集合;
(Ⅱ)在角A为锐角的△ABC中,角A、B、C的对边分别为a、b、c,f(A)=6且△ABC的面积为3,b+c=2+3
2
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
1
2
,点(1,
3
2
)在椭圆C上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若椭圆C的两条切线交于点M(4,t),其中t∈R,切点分别是A、B,试利用结论:在椭圆
x2
a2
+
y2
b2
=1上的点(x0,y0)处的椭圆切线方程是
x0x
a2
+
y0y
b2
=1,证明直线AB恒过椭圆的右焦点F2
(Ⅲ)试探究
1
|AF2|
+
1
|BF2|
的值是否恒为常数,若是,求出此常数;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲地区有10名人大代表,其中有4名女性;乙地区有5名人大代表,其中有3名女性,现采用分层抽样法从甲、乙两地区共抽取3名代表进行座谈.
(Ⅰ)求从甲、乙两地区各抽取的代表数;
(Ⅱ)求从甲组抽取的代表中至少有1名女性的概率;
(Ⅲ)记ξ表示抽取的3名代表中女性数,求ξ的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=[ax2+(a-1)2x+a-(a-1)2]ex(其中a∈R).
(Ⅰ)若x=0为f(x)的极值点,求a的值;
(Ⅱ)在(Ⅰ)的条件下,解不等式f(x)>(x-1)(
1
2
x2
+x+1);
(Ⅲ)若函数f(x)在区间(1,2)上单调递增,求实数a的取值范围.

查看答案和解析>>

同步练习册答案