精英家教网 > 高中数学 > 题目详情
某人射击一次,其中命中7~10环的概率表:
命中环数 7 8 9 10
概率 0.32 0.28 0.18 0.12
(1)求射击一次,至少命中8环的概率;
(2)求射击一次,命中的环数不到9环的概率.
考点:互斥事件的概率加法公式
专题:概率与统计
分析:某人射击一次命中7环、8环、9环、10环的事件分别记为A、B、C、D,则可得P(A)=0.32,P(B)=0.28,P(C)=0.18,P(D)=0.12
(1)射击一次,至少命中8环,即B∪C∪D,利用互斥事件概率加法公式,可得答案;
(2)射击一次,命中的环数不到9环,即
.
C∪D
,利用对立事件概率公式,可得答案.
解答: 解:记某人射击一次命中7环、8环、9环、10环的事件分别记为A、B、C、D,
则可得P(A)=0.32,P(B)=0.28,P(C)=0.18,P(D)=0.12,
且A,B,C,D之间彼此互斥,
(1)∵射击一次,至少命中8环为B∪C∪D,
故概率射击一次,至少命中8环为:
P(B∪C∪D)=P(B)+P(C)+P(D)
=0.28+0.18+0.12=0.58
(2)∵射击一次,命中的环数不到9环为
.
C∪D

∴命中环数不到9环的概率为:
1-P(
.
C∪D
)=1-(0.18+0.12)=0.7.
点评:本题考查了互斥事件有一个发生的概率公式的应用,若A,B互斥,则P(A+B)=P(A)+P(B),当一个事件的正面情况比较多或正面情况难确定时,常考虑对立事件.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若a,b∈R,i是虚数单位,且a+(b-1)i=1+i,则
1-bi
ai
对应的点在(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:

点M(3,4)到圆x2+y2=1上的点距离的最小值是(  )
A、1B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知F1,F2为椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点,过椭圆右焦点F2斜率为k(k≠0)的直线l与椭圆C相交于E、F两点,△EFF1的周长为8,且椭圆C与圆x2+y2=3相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设A为椭圆的右顶点,直线AE,AF分别交直线x=4于点M,N,线段MN的中点为P,记直线PF2的斜率为k′,求证k•k′为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=(x-a)2ex在x=2时取得极小值.
(1)求实数a的值;
(2)是否存在区间[m,n],使得f(x)在该区间上的值域为[e4m,e4n]?若存在,求出m,n的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

假设有A、B、C、D、E 5个条件相当的大学生去应聘某公司的同一职位时,但只能有3个人被录取,若5个人被录取的机会是相等的.
(Ⅰ)求大学生A被录取的概率;
(Ⅱ)求大学生A或B被录取的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知复数z1=(m2+6)+m2i,z2=5m+3mi(m∈R).
(Ⅰ)若z=z1-z2为纯虚数,求实数m的值;
(Ⅱ)当m=1时,若z=
z1
z2
,请问复数z在复平面内对应的点在第几象限?

查看答案和解析>>

科目:高中数学 来源: 题型:

为了构建和谐社会建立幸福指标体系,某地区决定用分层抽样的方法从公务员、教师、自由职业者三个群体的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人).
相关人员数 抽取人数
公务员 32 m
教师 16 n
自由职业者 64 8
(Ⅰ)求研究小组的总人数;
(Ⅱ)若从研究小组的公务员和教师中随机选3人撰写研究报告,求其中恰好有1人来自教师的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如果数列{an}同时满足:(1)各项均不为0,(2)存在常数k,对任意n∈N*,an+12anan+2+k都成立,则称这样的数列{an}为“类等比数列”.由此等比数列必定是“类等比数列”.问:
(1)各项均不为0的等差数列{bn}是否为“类等比数列”?说明理由.
(2)若数列{an}为“类等比数列”,且a1=a,a2=b(a,b为常数),是否存在常数λ,使得an+an+2=λan+1对任意n∈N*都成立?若存在,求出λ;若不存在,请举出反例.
(3)若数列{an}为“类等比数列”,且a1=a,a2=b,k=a2+b2(a,b为常数),求数列{an}的前n项之和Sn;数列{Sn}的前n项之和记为Tn,求T4k-3(k∈N*).

查看答案和解析>>

同步练习册答案