分析 (1)利用f(0)=0,确定a的值,使f(x)为奇函数;
(2)利用函数单调性的定义进行证明即可.
解答 解:(1)由题意,f(0)=a-$\frac{1}{2}$=0,∴a=$\frac{1}{2}$,
f(-x)=a-$\frac{1}{{2}^{-x}+1}$;
∵f(x)+f(-x)=a-$\frac{1}{{2}^{x}+1}$+a-$\frac{1}{{2}^{-x}+1}$=2a-$\frac{{2}^{x}+1}{{2}^{x}+1}$=2a-1;
∴经检验a=$\frac{1}{2}$,f(x)为奇函数;
(2)函数f(x)在定义域R内单调递增.
任意设两个实数x1,x2,且x1<x2,
则f(x1)-f(x2)=$\frac{{2}^{{x}_{1}}-{2}^{{x}_{2}}}{(1+{2}^{{x}_{1}})(1+{2}^{{x}_{2}})}$,
∵x1<x2,
∴${2}^{{x}_{1}}$-${2}^{{x}_{2}}$<0,(1+${2}^{{x}_{1}}$)(1+${2}^{{x}_{2}}$)>0
∴f(x1)-f(x2)<0,即f(x1)<f(x2),
∴函数f(x)在定义域R内单调递增.
点评 本题主要考查奇函数的定义,考查函数单调性的判断,利用函数单调性的定义是解决此类问题的基本方法.
科目:高中数学 来源: 题型:解答题
| AQI | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | 300以上 |
| 空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 支持 | 保留 | 不支持 | |
| 30岁以下 | 900 | 120 | 280 |
| 30岁以上(含30岁) | 300 | 260 | 140 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{63}{32}$ | B. | $\frac{31}{16}$ | C. | $\frac{123}{64}$ | D. | $\frac{127}{128}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com