精英家教网 > 高中数学 > 题目详情
已知椭圆的焦点为F1(-1,0)、F2(1,0),直线x=4是它的一条准线.
(1)求椭圆的方程;
(2)设A1、A2分别是椭圆的左顶点和右顶点,P是椭圆上满足|PA1|-|PA2|=2的一点,求tan∠A1PA2的值;
(3)若过点(1,0)的直线与以原点为顶点、A2为焦点的抛物线相交于点M、N,求MN中点Q的轨迹方程.
分析:(1)根据焦点坐标得c,根据准线方程x=4可得a2,再根据b2=a2-c2求得b2,把a2和b2代入标准方程即可.
(2)由题设知,点P在以A1、A2为焦点,实轴长为2的双曲线的右支上.根据(1)中的标准方程,可求得A1和A2的坐标,根据题意可知p点为椭圆和双曲线的交点,设双曲线方程为
x2
m2
-
y2
n2
=1,根据焦点和准线方程.分别可求得m和n,进而可得双曲线方程,根据椭圆和双曲线的标准方程,进而可求得点p的坐标,进而求得tan∠A1PA2的值.
(3)由题设知,抛物线方程为y2=8x.设M(x1,y1)、N(x2,y2),代入抛物线方程,设点Q(x,y)进而可得点Q的坐标,把y12=8x1和y22=8x2两式相减,然后把点Q的坐标(x,y)代入即可得到x与y的关系式,进而得到点Q的轨迹方程
解答:解:(1)设椭圆方程为
x2
a2
+
y2
b2
=1(a>b>0).
由题设有c=1,
a2
c
=4,
∴a2=4
∴b2=a2-c2=3.
所求椭圆方程为
x2
4
+
y2
3
=1.
(2)由题设知,点P在以A1、A2为焦点,实轴长为2的双曲线的右支上.
由(1)知A1(-2,0),A2(2,0),
设双曲线方程为
x2
m2
-
y2
n2
=1(m>0,n>0).
则2m=2,m2+n2=4,
解得m=1,n=
3

∴双曲线方程为x2-
y2
3
=1.
x2
4
+
y2
3
=1,x2-
y2
3
=1,
解得P点的坐标为(
2
10
5
3
5
5
)或(
2
10
5
,-
3
5
5
).
当P点坐标为(
2
10
5
3
5
5
)时,tan∠A1PA2=
kPA2-kPA1
1+kPA2kPA1
=-4
5

同理当P点坐标为(
2
10
5
,-
3
5
3
)时,
tan∠A1PA2=-4
5

故tan∠A1PA2=-4
5

(3)由题设知,抛物线方程为y2=8x.
设M(x1,y1)、N(x2,y2),MN的中点Q(x,y),
当x1≠x2时,有
y12=8x1,①
y22=8x2,②
x=
x1+x2
2
,③
y=
y1+y2
2
,④
y1-y2
x1-x2
=
y
x-1
.⑤
①-②,得
y1-y2
x1-x2
(y1+y2)=8,
将④⑤代入上式,有
y
x-1
•2y=8,
即y2=4(x-1)(x≠1).
当x1=x2时,MN的中点为(1,0),仍满足上式.
故所求点Q的轨迹方程为y2=4(x-1).
点评:本题主要考查了椭圆的标准方程的问题.椭圆的问题常与双曲线、抛物线和直线等问题一同考查,属高考的常考题目.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的焦点为F1(-1,0),F2(1,0),直线l:x-y+5=0,则
(1)经过直线l上一点P且长轴长最短的椭圆方程为
 
,(2)点P的坐标是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)已知椭圆的焦点为F1(0,-5),F2(0,5),点P(3,4)在椭圆上,求它的方程
(2)已知双曲线顶点间的距离为6,渐近线方程为y=±
32
x,求它的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点为F1(-6,0),F2(6,0),且该椭圆过点P(5,2).
(1)求椭圆的标准方程
(2)若椭圆上的点M(x0,y0)满足MF1⊥MF2,求y0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的焦点为F1(0,-2
2
)
F2(0,2
2
)
,离心率为e,已知
2
3
,e,
4
3
成等比数列;
(1)求椭圆的标准方程;
(2)已知P为椭圆上一点,求
PF1
PF2
最大值.

查看答案和解析>>

同步练习册答案