精英家教网 > 高中数学 > 题目详情
已知函数g(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013
,则函数g(x+3)的零点所在的区间为(  )
A、(-1,0)
B、(-4,-3)
C、(-3,-2)或(-2,-1)
D、(1,2)
分析:根据g(0)•g(-1)<0可判定g(x)在(-1,0)上存在零点,然后利用导数研究函数的单调性可得零点的个数,最后根据函数图象的平移可得结论.
解答:解:∵g(x)=1+x-
x2
2
+
x3
3
-
x4
4
+…+
x2013
2013

∴g(0)=1,g(-1)=-
1
2
-
1
3
-
1
4
-…-
1
2013
<0,
∴g(0)•g(-1)=g(-1)<0,
当x∈(-1,0)时,g′(x)=1-x+x2-x3+…-x2011+x2012=
1-(-x)2013
1-(-x)
=
1+x2013
1+x
>0,
∴g(x)在(-1,0)上是增函数,故g(x)恰有一个零点,
∵函数g(x+3)是由函数g(x)向左平移3个单位得到,
∴函数g(x+3)的零点所在的区间为(-4,-3).
故选:B.
点评:本题主要考查了函数零点的判定定理,以及利用导数研究函数的单调性和等比数列求和,同时考查了运算求解的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数g(x)=1-cos(πx+2φ)(0<φ<
π
2
)
的图象过点(
1
2
,  2)
,若有4个不同的正数xi满足g(xi)=M(0<M<1),且xi<4(i=1,2,3,4),则x1+x2+x3+x4等于
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
1-x21+x2
(x≠0,x≠±1,x∈R)
的值域为A,定义在A上的函数f(x)=x-2-x2(x∈A).
(1)判断函数f(x)的奇偶性;
(2)判断函数f(x)的单调性并用定义证明;
(3)解不等式f(3x+1)>f(5x+1).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
1-2x1+2x
.判断并证明函数g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数g(x)=
-1,x>0
0,x=0
1,x<0
,函数f(x)=x2?g(x),则满足不等式f(a-2)+f(a2)>0的实数a的取值范围是(  )
A、(-2,1)
B、(-1,2)
C、(-∞,-2)∪(1,+∞)
D、(-∞,-1)∪(2,+∞)

查看答案和解析>>

同步练习册答案