精英家教网 > 高中数学 > 题目详情
已知椭圆  (常数m、n∈R+,且m>n)的左右焦点分别为F1,F2 ,M、N为短轴的两个端点,且四边形F1MF2N是边长为2的正方形.
(Ⅰ)求椭圆方程;
(Ⅱ)过原点且斜率分别为k和-k(k≥2)的两条直线与椭圆 的交点为A、B、C、D(按逆时针顺序排列,且点A位于第一象限内),求四边形ABCD的面积S的最大值..
【答案】分析:(Ⅰ)由,得,由此能得到所求椭圆方程.
(Ⅱ)设A(x,y).由.根据题设直线图象与椭圆的对称性,知
.由此能求出四边形ABCD的面积S的最大值.
解答:解:(Ⅰ)依题意:,∴
所求椭圆方程为.(3分)
(Ⅱ)设A(x,y).
.(6分)
根据题设直线图象与椭圆的对称性,知(8分)
.(9分)

,则,当k≥2时,
∴M(k)在k∈[2,+∞)时单调递增,∴,(11分)
∴当k≥2时,.(12分)
点评:本题考查椭圆的方程的求法和四边形面积的最大值的求法,解题时要认真审题,注意合理地进行等价转化.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知椭圆数学公式 (常数m>1),P是曲线C上的动点,M是曲线C上的右顶点,定点A的坐标为(2,0)
(1)若M与A重合,求曲线C的焦点坐标;
(2)若m=3,求|PA|的最大值与最小值;
(3)若|PA|的最小值为|MA|,求实数m 的取值范围.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南师大附中高考适应性月考数学试卷4(文科)(解析版) 题型:解答题

已知椭圆  (常数m、n∈R+,且m>n)的左右焦点分别为F1,F2 ,M、N为短轴的两个端点,且四边形F1MF2N是边长为2的正方形.
(Ⅰ)求椭圆方程;
(Ⅱ)过原点且斜率分别为k和-k(k≥2)的两条直线与椭圆 的交点为A、B、C、D(按逆时针顺序排列,且点A位于第一象限内),求四边形ABCD的面积S的最大值..

查看答案和解析>>

科目:高中数学 来源:2012-2013学年云南师大附中高考适应性月考数学试卷4(文科)(解析版) 题型:解答题

已知椭圆  (常数m、n∈R+,且m>n)的左右焦点分别为F1,F2 ,M、N为短轴的两个端点,且四边形F1MF2N是边长为2的正方形.
(Ⅰ)求椭圆方程;
(Ⅱ)过原点且斜率分别为k和-k(k≥2)的两条直线与椭圆 的交点为A、B、C、D(按逆时针顺序排列,且点A位于第一象限内),求四边形ABCD的面积S的最大值..

查看答案和解析>>

科目:高中数学 来源:2010-2011学年吉林省长春外国语学校高二(下)期末数学试卷(文科)(解析版) 题型:解答题

已知椭圆 (常数m>1),P是曲线C上的动点,M是曲线C上的右顶点,定点A的坐标为(2,0)
(1)若M与A重合,求曲线C的焦点坐标;
(2)若m=3,求|PA|的最大值与最小值;
(3)若|PA|的最小值为|MA|,求实数m 的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年上海市嘉定区、黄浦区高考数学二模试卷(理科)(解析版) 题型:解答题

已知椭圆,常数m、n∈R+,且m>n.
(1)当m=25,n=21时,过椭圆左焦点F的直线交椭圆于点P,与y轴交于点Q,若,求直线PQ的斜率;
(2)过原点且斜率分别为k和-k(k≥1)的两条直线与椭圆的交点为A、B、C、D(按逆时针顺序排列,且点A位于第一象限内),试用k表示四边形ABCD的面积S;
(3)求S的最大值.

查看答案和解析>>

同步练习册答案