精英家教网 > 高中数学 > 题目详情
已知分别是椭圆的左,右顶点,点在椭圆 上,且直线与直线的斜率之积为

(1)求椭圆的标准方程;
(2)点为椭圆上除长轴端点外的任一点,直线与椭圆的右准线分别交于点
①在轴上是否存在一个定点,使得?若存在,求点的坐标;若不存在,说明理由;
②已知常数,求的取值范围.
(1);(2)①存在点的坐标为,②.

试题分析:(1)利用题目条件建立关于a,b,c的方程组,解方程组即可;
(2)①对于存在性问题,可以先假设点存在,然后根据以及点P在椭圆上直线与椭圆的右准线分别交于点等相关条件建立方程,看看点E的横坐标是不是定值,如果是即为所求,如果不是也就说明了不存在;②利用向量的坐标运算,计算,进而求出的表达式,在利用函数知识求取值范围.

试题解析:(1)由题意得,
 , ∴
由点在椭圆C上,则有:
 ,                2分
由以上两式可解得
∴椭圆方程为.         4分
(2)①椭圆右准线的方程为.                                  5分
假设存在一个定点,使得.设点().
直线的方程为,令,∴点坐标为
直线的方程为,令
∴点坐标为.                     7分
,则,∵
.             9分
∵点在椭圆上,∴,∴ ,代入上式,得 ,
,∴点的坐标为.                       11分
②∵

,∴
 .                    13分
设函数,定义域为
时,即时,上单调递减,的取值范围为
时,即时,上单调递减,在上单调递增,的取值范围为 .
综上,当时,的取值范围为
时,的取值范围为.             16分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线的焦点为椭圆的右焦点,且椭圆的长轴长为4,M、N是椭圆上的的动点.
(1)求椭圆标准方程;
(2)设动点满足:,直线的斜率之积为,证明:存在定点使
为定值,并求出的坐标;
(3)若在第一象限,且点关于原点对称,垂直于轴于点,连接 并延长交椭圆于点,记直线的斜率分别为,证明:.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的离心率为,且经过点. 过它的两个焦点分别作直线交椭圆于A、B两点,交椭圆于C、D两点,且

(1)求椭圆的标准方程;
(2)求四边形的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知双曲线C与椭圆=1有共同的焦点F1F2,且离心率互为倒数.若双曲线右支上一点P到右焦点F2的距离为4,则PF2的中点M到坐标原点O的距离等于________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线与椭圆相交于两点,且线段的中点在直线上,则此椭圆的离心率为_______

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

F1F2分别是椭圆Ex2=1(0<b<1)的左、右焦点,过F1的直线lE相交于AB两点,且|AF2|,|AB|,|BF2|成等差数列.
(1)求|AB|;
(2)若直线l的斜率为1,求b的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知圆过椭圆的右顶点和右焦点,圆心在此椭圆上,那么圆心到椭圆中心的距离是                 .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知为椭圆上一点, 为椭圆的两个焦点,且, 则(     )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知F1、F2是椭圆=1(a>b>0)的左右焦点,P是椭圆上一点,∠F1PF2=90°,求椭圆离心率的最小值为          

查看答案和解析>>

同步练习册答案