精英家教网 > 高中数学 > 题目详情
心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间,上课开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,并趋于稳定.分析结果和实验表明,设提出和讲述概念的时间为x(单位:分),学生的接受能力为f(x)(f(x)值越大,表示接受能力越强),
f(x)=
-0.1x2+2.6x+44,0<x≤10
60                     ,10<x≤15
-3x+105            ,15<x≤25
30                      ,25<x≤40

(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?
(2)试比较开讲后5分钟、20分钟、35分钟,学生的接受能力的大小;
(3)若一个数学难题,需要56的接受能力以及12分钟时间,老师能否及时在学生一直达到所需接受能力的状态下讲述完这个难题?
分析:(1)求学生的接受能力最强其实就是要求分段函数的最大值,方法是分别求出各段的最大值取其最大即可;
(2)比较5分钟、20分钟、35分钟学生的接受能力大小,方法是把x=5代入第一段函数中,而x=20要代入到第三段函数中,x=35代入第四段函数,比较大小即可
(3)在每一段上解不等式f(x)≥56,求出满足条件的x,从而得到接受能力56及以上的时间,然后与12进行比较即可.
解答:解:(1)由题意可知:0<x≤10
f(x)=-0.1(x-13)2+60.9
所以当x=10时,f(x)的最大值是60,…(2分)
又10<x≤15,f(x)=60              …(3分)
所以开讲后10分钟,学生的接受能力最强,并能维持5分钟.…(4分)
(2)由题意可知:f(5)=54.5,f(20)=45,f(35)=30 …(5分)
所以开讲后5分钟、20分钟、35分钟的学生的接受能力从大小依次是
开讲后5分钟、20分钟、35分钟的接受能力;…(6分)
(3)由题意可知:
当0<x≤10,f(x)=-0.1(x-13)2+60.9≥56
解得:6≤x≤10                 …(7分)
当10<x≤15时,f(x)=60>56,满足要求; …(8分)
当15<x≤25时,-3x+105≥56
解得:15<x≤16
1
3
                …(9分)
因此接受能力56及以上的时间是10
1
3
分钟小于12分钟.
所以老师不能在所需的接受能力和时间状态下讲述完这个难题.…(10分)
点评:本题主要考查了函数模型的选择与应用,此题学生容易出错,原因是学生把分段函数定义理解不清,自变量取值不同,函数解析式不同是分段函数最显著的特点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于教师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生的接受能力,x表示引入概念和描述问题所用的时间(单位:分钟),可有以下的公式:
f(x)=
-0.1x2+2.6x+43,0<x≤10
59,10<x≤16
-3x+107,16<x≤30.

(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?
(2)一道数学难题,需要55的接受能力以及13分钟,教师能否及时在学生一直达到所需接受能力的状态下讲授完这道难题?

查看答案和解析>>

科目:高中数学 来源: 题型:

通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间.授课开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力,x表示提出和讲授概念的时间(单位:分),可有以下的关系:f(x)=
-0.1x2+2.6x+43(0<x≤10)
59                            (10<x≤16)
-2x+91                 (16<x≤40)

(1)开讲后多少分钟,学生的接受能力最强?这个强度可以持续多长时间?
(2)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些?
(3)一道数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完?

查看答案和解析>>

科目:高中数学 来源:2012-2013学年广西北海市合浦七中高一(上)期中数学试卷(解析版) 题型:解答题

通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间.授课开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生注意力开始分散.分析结果和实验表明,用f(x)表示学生掌握和接受概念的能力,x表示提出和讲授概念的时间(单位:分),可有以下的关系:f(x)=
(1)开讲后多少分钟,学生的接受能力最强?这个强度可以持续多长时间?
(2)开讲后5分钟与开讲后20分钟比较,学生的接受能力何时强一些?
(3)一道数学难题,需要55的接受能力以及13分钟的时间,老师能否及时在学生一直达到所需接受能力的状态下讲授完?

查看答案和解析>>

科目:高中数学 来源:人教A版必修1《第1章 集合与函数概念》2013年同步练习卷A(13)(解析版) 题型:解答题

通过研究学生的学习行为,心理学家发现,学生的接受能力依赖于教师引入概念和描述问题所用的时间.讲座开始时,学生的兴趣激增;中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散.分析结果和实验表明,用f(x)表示学生的接受能力,x表示引入概念和描述问题所用的时间(单位:分钟),可有以下的公式:
f(x)=
(1)开讲后多少分钟,学生的接受能力最强?能维持多长时间?
(2)一道数学难题,需要55的接受能力以及13分钟,教师能否及时在学生一直达到所需接受能力的状态下讲授完这道难题?

查看答案和解析>>

同步练习册答案