如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F.若△OEF的面积不小于2
,求直线l斜率的取值范围.
|
(Ⅰ)解法1:以O为原点,AB、OD所在直线分别为x轴、y轴,建立平面直角坐标系,则A(-2,0),B(2,0),D(0,2),P( |MA|-|MB|=|PA|-|PB|= ∴曲线C是以原点为中心,A、B为焦点的双曲线. 设实平轴长为a,虚半轴长为b,半焦距为c, 则c=2,2a=2 ∴曲线C的方程为 解法2:同解法1建立平面直角坐标系,则依题意可得|MA|-|MB|=|PA|-|PB|<|AB|=4. ∴曲线C是以原点为中心,A、B为焦点的双曲线. 设双曲线的方程为 则由 ∴曲线C的方程为
(Ⅱ)解法1:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理得(1-k2)x2-4kx-6=0. ∵直线l与双曲线C相交于不同的两点E、F, ∴ ∴k∈(- 设E(x,y),F(x2,y2),则由①式得x1+x2= |EF|= = 而原点O到直线l的距离d= ∴S△DEF= 若△OEF面积不小于2 综合②、③知,直线l的斜率的取值范围为[- 解法2:依题意,可设直线l的方程为y=kx+2,代入双曲线C的方程并整理, 得(1-k2)x2-4kx-6=0. ∵直线l与双曲线C相交于不同的两点E、F, ∴ ∴k∈(- 设E(x1,y1),F(x2,y2),则由①式得 |x1-x2|= 当E、F在同一去上时(如图1所示), S△OEF= 当E、F在不同支上时(如图2所示). 综上得S△OEF= 由|OD|=2及③式,得S△OEF= 若△OEF面积不小于2 综合②、④知,直线l的斜率的取值范围为[- 本小题主要考查直线、圆和双曲线等平面解析几何的基础知识,考查轨迹方程的求法、不等式的解法以及综合解题能力.(满分13分) |
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
如图,在以点O为圆心,AB为直径的半圆中,D为半圆弧的中点, P为半圆弧上一点,且AB=4,∠POB=30°,双曲线C以A,B为焦点且经过点P.
(Ⅰ)建立适当的平面直角坐标系,求双曲线C的方程;
(Ⅱ)设过点D的直线l与双曲线C相交于不同两点E、F,
若△OEF的面积不小于2
,求直线l的斜率的取值范围.
![]()
查看答案和解析>>
科目:高中数学 来源:2009-2010学年湖南师大附中高三(上)第三次月考数学试卷(理科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2008年普通高等学校招生全国统一考试理科数学(湖北卷) 题型:解答题
(本小题满分13分)
如图,在以点O为圆心,|AB|=4为直径的半圆ADB中,OD⊥AB,P是半圆弧上一点,
∠POB=30°,曲线C是满足||MA|-|MB||为定值的动点M的轨迹,且曲线C过点P。
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)设过点D的直线l与曲线C相交于不同的两点E、F。若△OEF的面积不小于2
,求直线l斜率的取值范围。
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com