(1)设
,平面上的点如其坐标都是整数,则称之为格点。今有曲线
过格点(n,m),记
对应的曲线段上的格点数为N。证明:
。
(2)进而设a是一个正整数,证明:
。
(注
表示不超过x的最大整数)
科目:高中数学 来源: 题型:
| x2 |
| a2 |
| y2 |
| b2 |
| PM |
| 1 |
| 2 |
| PA |
| PB |
| b2 |
| a2 |
| PP1 |
| PP2 |
| PQ |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知椭圆
的方程为
,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)对于椭圆
上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆
上存在不同的两个交点
、
满足
,写出求作点
、
的步骤,并求出使
、
存在的θ的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分18分)本题共有3个小题,第1小题满分3分,第2小题满分6分,第3小题满分9分.
已知椭圆
的方程为
,点P的坐标为(-a,b).
(1)若直角坐标平面上的点M、A(0,-b),B(a,0)满足
,求点
的坐标;
(2)设直线
交椭圆
于
、
两点,交直线
于点
.若
,证明:
为
的中点;
(3)对于椭圆
上的点Q(a cosθ,b sinθ)(0<θ<π),如果椭圆
上存在不同的两个交点
、
满足
,写出求作点
、
的步骤,并求出使
、
存在的θ的取值范围.
查看答案和解析>>
科目:高中数学 来源:2015届云南省高二上学期期中考试文科数学试卷(解析版) 题型:解答题
在平面直角坐标系
中,已知圆
和圆
.
(1)若直线
过点
,且被圆
截得的弦长为
,求直线
的方程;
(2)设
为平面上的点,满足:存在过点
的无穷多对互相垂直的直线
和
,它们分别与圆
和圆
相交,且直线
被圆
截得的弦长与直线
被圆
截得的弦长相等,试求所有满足条件的点
的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com