精英家教网 > 高中数学 > 题目详情
已知圆x2+y2-4x-9=0与y轴的两个交点A,B都在某双曲线上,且A,B两点恰好将此双曲线的焦距三等分,则此双曲线的标准方程为
 
考点:双曲线的标准方程
专题:圆锥曲线的定义、性质与方程
分析:由已知条件推导出A(0,-3),B(0,3),从而得到a=3,2c=18,由此能求出双曲线方程.
解答: 解:解方程组
x2+y2-4x-9=0
x=0
,得
x=0
y=3
x=0
y=-3

∵圆x2+y2-4x-9=0与y轴的两个交点A,B都在某双曲线上,
且A,B两点恰好将此双曲线的焦距三等分,
∴A(0,-3),B(0,3),
∴a=3,2c=18,∴b2=(
18
2
2-32=72,
∴双曲线方程为
y2
9
-
x2
72
=1.
故答案为:为
y2
9
-
x2
72
=1.
点评:本题考查双曲线的标准方程的求法,是基础题,解题时要认真审题,要熟练掌握双曲线的简单性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知岛A南偏东30°方向,距岛A 20海里的B处有一缉私艇,一艘走私艇正从A处以30海里/小时的航速沿正东方向匀速行驶.假使缉私艇沿直线方向以v海里/小时的航速匀速行驶,经过t小时截住该走私船.
(1)为保证缉私艇在30分钟(含30分钟)内截住该走私船,试确定缉私艇航行速度的最小值;
(2)是否存在v,使得缉私艇以v海里/小时的航速行驶,总能有两种不同的航行方向截住该走私艇,若存在,试确定v的取值范围,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y满足条件:
2x-y-3≤0
x+3y-3≤0
y≥0
,则x+y的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

按如图表示的算法,若输入一个小于10的正整数n,则输出n的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中:
①某中学高三(1)班有学生m人,现按座位号的编号采用系统抽样的方法选取5名同学参加一项活动,已知座位号为5号、16号、27号、38号、49号的同学均被选出,则该班的学生人数m的取值范围为[55,59];
②有一个容量为200的样本,其频率分布直方图如图所示,根据样本的频率分布直方图估计,样本数据落在区间[10,12)内的频数为20;
③已知圆C:x2+y2=12,直线l:4x+3y=25.圆C上任意一点A到直线l的距离小于2的概率为
1
6

④已知回归直线y=bx+a的回归系数b的估计值是1.23,
.
y
=5,
.
x
=4,则回归直线方程是y=1.23x+0.08.
正确命题的序号为:
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,若中心在坐标原点的双曲线过点(2,3),且它的一个顶点与抛物线y2=4x的焦点重合,则该双曲线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若两圆x2+y2+2ax+a2-4=0和x2+y2-4by-1+4b2=0恰有三条公切线,其中a,b∈R,ab≠0,则
4
a2
+
1
b2
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

要得到函数y=tan(2x+
π
3
)的图象,只须将y=tan2x的图象上的所有的点(  )
A、向左平移
π
3
个单位长度
B、向右平移
π
3
个单位长度
C、向左平移
π
6
个单位长度
D、向右平移
π
6
个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:

如图:若输出结果在区间[-2,2]内,则输入x的取值范围是(  )
A、[-2,0]
B、[-3,-1]
C、[-2,1]
D、[-1,3]

查看答案和解析>>

同步练习册答案