精英家教网 > 高中数学 > 题目详情

f(x)=(m-1)x2+6mx+2是偶函数,则f(0)、f(1)、f(-2)从小到大的顺序是__________.

 

【答案】

f(-2)<f(1)<f(0)

【解析】

试题分析:f(x)=(m-1)x2+6mx+2若为偶函数,则表达式中显然不能含有一次项6mx,故m=0.再根据二次函数进行讨论它的单调性即可比较f(0),f(1),f(-2)大小解:(1)若m=1,则函数f(x)=6x+2,

则f(-x)=-6x+2≠f(x),此时函数不是偶函数,所以m≠1,(2)若m≠1,且函数f(x)=(m-1)x2+6mx+2是偶函数,则 一次项6mx=0恒成立,则 m=0,因此,函数为 f(x)=-x2+2,此函数图象是开口向下,以y轴为对称轴二次函数图象由其单调性得:f(-2)<f(1)<f(0)故答案为f(-2)<f(1)<f(0)

考点:函数奇偶性

点评:函数奇偶性定义中f(-x)=f(x)(或f(-x)=-f(x)),包含两层意义:一是x与-x都使函数有意义,则定义域关于原点对称;二是f(-x)=f(x)图象关于y轴对称,f(-x)=-f(x)图象关于原点对称.

 

练习册系列答案
相关习题

科目:高中数学 来源:教材完全解读 高中数学 必修5(人教B版课标版) 人教B版课标版 题型:013

若f(x)=(m+1)x2-(m-1)x+3(m-1)<0对一切实数x恒成立,则m的取值范围是

[  ]

A.(1,+∞)

B.(-∞,1)

C.

D.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省长沙市高三第六次月考理科数学卷 题型:解答题

(本小题满分12分)

已知向量m=(sin,1),n=(cos,cos2),f(x)=m·n.

(1)若f(x)=1,求cos(-x)的值;

(2)在△ABC中,角A,B,C的对边分别是a,b,c且满足acosC+c=b,求函数f(B)的取值范围.

 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量m=(sin,1),n=(cos,cos2),f(x)=m·n.

(1)若f(x)=1,求cos(x)的值;

(2)在△ABC中,角ABC的对边分别是abc且满足acosCcb,求函数f(B)的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数f(x)=(m-1)x2+2(m+1)x-1有且仅有一个零点,则实数m的取值集合是    .

查看答案和解析>>

同步练习册答案