精英家教网 > 高中数学 > 题目详情
在平面直角坐标系中,已知平行四边形ABCD的三个顶点分别是A(-1,-2),B(0,1),C(3,2).
①求直线BC的方程;
②求平行四边形ABCD的面积.
考点:点到直线的距离公式,直线的两点式方程
专题:直线与圆
分析:①由B(0,1),C(3,2),利用直线的两点式方程能求出直线BC的方程.
②由A(-1,-2),B(0,1),C(3,2)和直线BC的方程,能求出点A到直线BC的距离和BC的长,由此能求出S△ABC,从而能求出平行四边形ABCD的面积.
解答: 解:①∵B(0,1),C(3,2),
∴由直线的两点式方程得
直线BC的方程是
y-1
2-1
=
x-0
3-0

整理,得x-3y+3=0.
②∵A(-1,-2),B(0,1),C(3,2),直线BC的方程是x-3y+3=0,
∴点A到直线BC的距离d=
|-1+6+3|
10
=
4
10
5

BC=
32+(2-1)2
=
10

∴S△ABC=
1
2
×BC×d
=
1
2
×
4
10
5
×
10
=4,
∴平行四边形ABCD的面积S=2S△ABC=2×4=8.
点评:本题考查直线方程的求法,考查四边形面积的求法,解题时要认真审题,注意两点式方程、点到直线距离公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图所示,程序框图的输出结果为(  )
A、
3
4
B、
1
6
C、
11
12
D、
25
24

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知三棱锥O-ABC的侧棱OA,OB,OC两两垂直,且OA=1,OB=OC=2,E是OC的中点.
(1)求异面直线EB与AC所成角的余弦值;
(2)求直线EB和平面ABC的所成角的正弦值.
(3)求点E到面ABC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知,如图四棱锥P-ABCD中,底面ABCD是平行四边形,PG⊥平面ABCD,垂足为G,G在线段AD上,且PG=4,AG=
1
3
GD
,BG⊥GC,BG=GC=2,E是BC的中点.
(1)求异面直线GE与PC所成角的余弦值;
(2)求DG与平面PBG所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,代表空气污染越严重.PM2.5的浓度与空气质量类别的关系如下表所示:
PM2.5日均浓度 0~35 35~75 75~115 115~150 150~250 >250
空气质量类别 轻度污染 中度污染 重度污染 严重污染
从甲城市2013年9月份的30天中随机抽取15天的PM2.5日均浓度指数数据茎叶图如图所示.
(1)试估计甲城市在2013年9月份30天的空气质量类别为优或良的天数;
(2)在甲城市这15个监测数据中任取2个,设X为空气质量类别为优或良的天数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知如图,直线l:x+y-5=0,圆C经过A(1,0)、B(3,0)两点,且与直线l相切,圆心C在第一象限.
(Ⅰ)求圆C的标准方程;
(Ⅱ)设P为l上的动点,求∠APB的最大值,以及此时P点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)设函数F(x)=(-x2-2x-1)e-x,x∈R.求函数F(x)的单调递减区间;
(2)证明函数f(x)=
x
-x
(ex+e-x)dx
在R上是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,△ABC是正三角形,△ABD是等腰直角三角形,AB=BD=2.将△ABD沿边AB折起,使得△ABD与△ABC成30°的二面角D-AB-C,如图2,在二面角D-AB-C中.

(1)求D、C之间的距离;
(2)求CD与面ABC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知方程x2+
x
tanθ
-
1
sinθ
=0有两个不等实根a和b,那么过点A(a,a2),B(b,b2)的直线与圆x2+y2=1的位置关系是
 

查看答案和解析>>

同步练习册答案