精英家教网 > 高中数学 > 题目详情
若b<0,a+b>0,则a-b的值(  )
分析:根据不等式的性质,由a+b>0得a>-b,则a>0,然后a>0,然后判断a-b的符号即可.
解答:解:∵b<0,a+b>0,
∴a>-b>0,
∴a-b>0.
故选:D.
点评:本题主要考查不等式的性质,利用条件确定a>0是解决本题的关键,比较基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

下列使用类比推理所得结论正确的序号是
(4)
(4)

(1)直线a,b,c,若a∥b,b∥c,则a∥c.类推出:向量
a
b
c
,若
a
b
b
c
a
c

(2)同一平面内,三条不同的直线a,b,c,若a⊥c,b⊥c,则a∥b.类推出:空间中,三条不同的直线a,b,c,若a⊥c,b⊥c,则a∥b.
(3)任意a,b∈R,a-b>0则a>b.类比出:任意a,b∈C,a-b>0则a>b.
(4)以点(0,0)为圆心,r为半径的圆的方程是x2+y2=r2.类推出:以点(0,0,0)为球心,r为半径的球的方程是x2+y2+z2=r2

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题
(1).函数f(x)=
a2-x2
|x+a|-a
(a>0)
,既不是奇函数,又不是偶函数;
(2)0<x<1,a,b∈R,且a•b>0,则函数y=
a2
x
+
b2
1-x
的最小值是a2+b2
(3)已知向量
OP1
OP2
OP3
满足条件
OP1
+
OP2
+
OP3
=
0
,且|
OP1
|=|
OP2
|=|
OP3
|=1
,则△P1P2P3为正三角形;
(4)已知a>b>c,若不等式
1
a-b
+
1
b-c
k
a-c
恒成立,则k∈(0,2);
其中正确命题的有
(3)
(3)
(填出满足条件的所有序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

若a>b>c,则
1
a-b
+
1
b-c
4
a-c

证明:因为(a-c)(
1
a-b
+
1
b-c
)
=(a-b+b-c)(
1
a-b
+
1
b-c
)
=2+
b-c
a-b
+
a-b
b-c

∵a>b>c∴a-b>0,b-c>0;
b-c
a-b
+
a-b
b-c
≥2
b-c
a-b
a-b
b-c
=2
∴2+
b-c
a-b
+
a-b
b-c
≥4∴(a-c)(
1
a-b
+
1
b-c
)
≥4
     因为a>c所以a-c>0
     所以
1
a-b
+
1
b-c
4
a-c

类比上述命题及证明思路,回答以下问题:
①若a>b>c>d,比较
1
a-b
+
1
b-c
+
1
c-d
9
a-d
的大小,并证明你的猜想;
②若a>b>c>d>e,且
1
a-b
+
1
b-c
+
1
c-d
+
1
d-e
m
a-e
恒成立,试猜想m的最大值,并写出猜想过程,不要求证明.

查看答案和解析>>

科目:高中数学 来源:2010年山东省普通高中学业水平考试数学试卷(解析版) 题型:选择题

若b<0<a(a,b∈R),则下列不等式中正确的是( )
A.b2<a2
B.
C.-b<-a
D.a-b>a+b

查看答案和解析>>

同步练习册答案