分析 (1)确定|MF2|=b2,|MF1|=2b2,由双曲线的定义可知:|MF1|-|MF2|=b2=2,从而可得双曲线C的方程;
(2)分类讨论:①当切线l的斜率存在,设切线l的方程代入双曲线C中,利用韦达定理,结合直线l与圆O相切,可得|AB|=2|ON|成立;②当切线l的斜率不存在时,求出A,B的坐标,即可得到结论.
解答 (1)解:设F2,M的坐标分别为($\sqrt{1+{b}^{2}}$,0),($\sqrt{1+{b}^{2}}$,y0)
因为点M在双曲线C上,所以1+b2-$\frac{{{y}_{0}}^{2}}{{b}^{2}}$=1,即y0=±b2,所以|MF2|=b2,
在Rt△MF2F1中,∠MF1F2=30°,|MF2|=b2,所以|MF1|=2b2…(2分)
由双曲线的定义可知:|MF1|-|MF2|=b2=2
故双曲线C的方程为:${x}^{2}-\frac{{y}^{2}}{2}=1$…(4分)
(2)证明:由题意,即证:OA⊥OB.
设A(x1,y1),B(x2,y2),切线l的方程为:x0x+y0y=2…(11分)
①当y0≠0时,切线l的方程代入双曲线C中,化简得:(2y02-x02)x2+4x0x-(2y02+4)=0
所以:x1+x2=-$\frac{4{x}_{0}}{2{{y}_{0}}^{2}-{{x}_{0}}^{2}}$,x1x2=-$\frac{2{{y}_{0}}^{2}+4}{2{{y}_{0}}^{2}-{{x}_{0}}^{2}}$
又y1y2=$\frac{8-2{{x}_{0}}^{2}}{2{{y}_{0}}^{2}-{{x}_{0}}^{2}}$…(13分)
所以$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=-$\frac{2{{y}_{0}}^{2}+4}{2{{y}_{0}}^{2}-{{x}_{0}}^{2}}$+$\frac{8-2{{x}_{0}}^{2}}{2{{y}_{0}}^{2}-{{x}_{0}}^{2}}$=0…(15分)
②当y0=0时,易知上述结论也成立.
所以$\overrightarrow{OA}•\overrightarrow{OB}$=x1x2+y1y2=0…(16分)
综上,OA⊥OB,所以|$\overrightarrow{AB}$|=2|$\overrightarrow{ON}$|.
点评 本题考查双曲线的标准方程,考查直线与双曲线的位置关系,考查韦达定理的运用,考查向量知识,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1] | B. | (-∞,0)∪(0,1) | C. | (-∞,0)∪(0,1] | D. | [1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com