精英家教网 > 高中数学 > 题目详情
证明:事件在一次试验中发生的次数的方差不超过.

证明:设事件在一次试验中发生的次数为ξ,ξ的可能取值为0或1,又设事件在一次试验中发生的概率为p,则P(ξ=0)=1-p,P(ξ=1)=p,Eξ=0×(1-p)+1×p=p,Dξ=(1-p)·(0-p)2+p(1-p)2=p(1-p)≤()2=.所以事件在一次试验中发生的次数的方差不超过.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设事件A发生的概率为p,证明事件A在一次试验中发生次数ξ的方差不超过1/4.

查看答案和解析>>

科目:高中数学 来源:导学大课堂选修数学2-3苏教版 苏教版 题型:047

证明事件在一次试验中发生次数方差不超过

查看答案和解析>>

科目:高中数学 来源: 题型:

设事件A发生的概率为p(0<p<1),

(1)证明事件A在一次试验中发生次数ε的方差不超过.

(2) 求的最大值

(3)在n次独立重复实验中,事件A发生次数ξ的方差最大值是多少?

查看答案和解析>>

科目:高中数学 来源:高考数学一轮复习必备(第90课时):第十章 排列、组合和概率-随机变量的分布列、期望和方差(解析版) 题型:解答题

设事件A发生的概率为p,证明事件A在一次试验中发生次数ξ的方差不超过1/4.

查看答案和解析>>

同步练习册答案