精英家教网 > 高中数学 > 题目详情
8.设等差数列{an}的公差d∈(0,1),且$\frac{{{{sin}^2}{a_8}-{{sin}^2}{a_4}}}{{sin({a_4}+{a_8})}}$=1,当n=8时,{an}的前n项和Sn取得最小值,则a1的取值范围是[-π,-$\frac{7π}{8}$].

分析 利用三角函数的降幂公式将条件$\frac{{{{sin}^2}{a_8}-{{sin}^2}{a_4}}}{{sin({a_4}+{a_8})}}$=1化为$\frac{\frac{1-cos{2a}_{8}}{2}-\frac{1-cos{2a}_{4}}{2}}{sin{(a}_{4}{+a}_{8})}$=1,利用和差化积公式求得sin(a8-a4)=1,从而可求得等差数列{an}的公差d,再由数列{an}的前n项和Sn取得最小值时$\left\{\begin{array}{l}{{a}_{8}≤0}\\{{a}_{9}≥0}\end{array}\right.$,即可求得首项a1的取值范围.

解答 解:∵{an}为等差数列,且$\frac{{{{sin}^2}{a_8}-{{sin}^2}{a_4}}}{{sin({a_4}+{a_8})}}$=1,
∴$\frac{\frac{1-cos{2a}_{8}}{2}-\frac{1-cos{2a}_{4}}{2}}{sin{(a}_{4}{+a}_{8})}$=1,
即$\frac{co{s2a}_{4}-cos{2a}_{8}}{2}$=sin(a4+a8),
由和差化积公式得:$\frac{1}{2}$×(-2)sin(a4+a8)•sin(a4-a8)=sin(a4+a8),
∵sin(a4+a8)≠0,
∴sin(a4-a8)=-1,即sin(a8-a4)=1,
∴4d=2kπ+$\frac{π}{2}$∈(0,4),
取k=0,则4d=$\frac{π}{2}$,解得d=$\frac{π}{8}$;
又n=8时,数列{an}的前n项和Sn取得最小值,
∴$\left\{\begin{array}{l}{{a}_{8}≤0}\\{{a}_{9}≥0}\end{array}\right.$,即$\left\{\begin{array}{l}{{a}_{1}+7×\frac{π}{8}≤0}\\{{a}_{1}+8×\frac{π}{8}≥0}\end{array}\right.$,
解得-π≤a1≤-$\frac{7π}{8}$.
故答案为:[-π,-$\frac{7π}{8}$].

点评 本题考查了数列与三角函数的综合应用问题,利用三角函数的降幂公式与和差化积公式求得sin(a8-a4)=1是关键,也是难点,也考查了化归思想、函数与方程思想的应用问题,是较难的题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知各项都不相等的等差数列{an},其前n项和为Sn满足S6=60,${a}_{6}^{2}$=a1•a21,则数列{$\frac{{S}_{n}}{{2}^{n-1}}$}最大值为6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=4sinθ.
(1)求曲线C的直角坐标方程;
(2)若曲线C1:$\left\{\begin{array}{l}x=3+rcosα\\ y=-2+rsinα\end{array}\right.$(α为参数)与曲线C所表示的图形都相切,求r的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.给出下列四个命题:
①函数y=2sin(2x-$\frac{π}{3}$)的一条对称轴是x=$\frac{5π}{12}$;
②函数y=tanx的图象关于点($\frac{π}{2}$,0)对称;
③正弦函数在第一象限为增函数
④存在实数α,使$\sqrt{2}$sin(α+$\frac{π}{4}}$)=$\frac{3}{2}$
以上四个命题中正确的有①②(填写正确命题前面的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,过点F的直线交椭圆于A,B两点,|AF|的最大值为M,|BF|的最小值为m,满足M•m=$\frac{3}{4}$a2
(Ⅰ)若线段AB垂直于x轴时,|AB|=$\frac{3}{2}$,求椭圆的方程;
(Ⅱ)若椭圆的焦距为2,设线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点,O是坐标原点,记△GFD的面积为S1,△OED的面积为S2,求$\frac{2{S}_{1}{S}_{2}}{{{S}_{1}}^{2}+{{S}_{2}}^{2}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若-cosx+sinx=$\sqrt{2}$sin(x+α)则tanα为(  )
A.1B.-1C.-$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若函数f(x)=2sin(2x+$\frac{π}{6}$)-2cos2x,x∈[$\frac{π}{2}$,π].
(1)若sinx=$\frac{4}{5}$,求函数f(x)的值;
(2)求函数f(x)的周期、最小值、对称轴、单调增区间;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若实数x,y满足不等式组$\left\{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}\right.$,则$\frac{y+3x+7}{x+5}$的最小值为(  )
A.-$\frac{4}{5}$B.-2C.-$\frac{11}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.经过点P(-2,-1)、Q(3,a)的直线l与倾斜角是45°的直线平行,则a的值为4.

查看答案和解析>>

同步练习册答案