精英家教网 > 高中数学 > 题目详情

【题目】在我国,大学生就业压力日益严峻,伴随着政府政策引导与社会观念的转变,大学生创业意识,就业方向也悄然发生转变某大学生在国家提供的税收,担保贷款等很多方面的政策扶持下选择加盟某专营店自主

创业,该专营店统计了近五年来创收利润数(单位:万元)与时间(单位:年)的数据,列表如下:

1

2

3

4

5

2.4

2.7

4.1

6.4

7.9

(Ⅰ)依据表中给出的数据,是否可用线性回归模型拟合的关系,请计算相关系数并加以说明(计算结果精确到0.01).(若,则线性相关程度很高,可用线性回归模型拟合):

(Ⅱ)该专营店为吸引顾客,特推出两种促销方案.

方案一:每满500元可减50元;

方案二:每满500元可抽奖一次,每次中奖的概率都为,中奖就可以获得100元现金奖励,假设顾客每次抽奖的结果相互独立.

①某位顾客购买了1050元的产品,该顾客选择参加两次抽奖,求该顾客获得100元现金奖励的概率.

②某位顾客购买了1500元的产品,作为专营店老板,是希望该顾客直接选择返回150元现金,还是选择参加三次抽奖?说明理由

附:相关系数公式

参考数据:

【答案】(Ⅰ),可用线性线性回归模型拟合;(Ⅱ)①;②希望顾客参加抽奖,理由见解析.

【解析】

(Ⅰ)根据已知计算相关系数,然后比较即可得到答案;(Ⅱ)①顾客选择参加两次抽奖,设他获得100元现金奖励为事件A.利用独立事件同时发生的概率公式计算得到概率; ②设X表示顾客在三次抽奖中中奖的次数,由于顾客每次抽奖的结果相互独立,利用二项分布列及其期望公式计算,然后根据结果做出论断即可.

(Ⅰ)由题可知:

的线性相关程度很高,可用线性线性回归模型拟合.

(Ⅱ)顾客选择参加两次抽奖,设他获得100元现金奖励为事件A

X表示顾客在三次抽奖中中奖的次数,由于顾客每次抽奖的结果相互独立,则,

所以 ,

由于顾客每中一次可获得100元现金奖励,因此该顾客在三次抽奖中可获得的奖励金额的均值为,

由于顾客参加三次抽奖获得现金奖励的均值120小于直接返现的150元,所以专营店老板希望顾客参加抽奖.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为调查某地区被隔离者是否需要社区非医护人员提供帮助,用简单随机抽样方法从该地区调查了500位被隔离者,结果如下:

性别

是否需要

需要

40

30

不需要

160

270

0.050

0.010

0.001

3.841

6.635

10.828

1)估计该地区被隔离者中,需要社区非医护人员提供帮助的被隔离者的比例;

2)能否有99%的把握认为该地区的被隔离者是否需要社区非医护人员提供帮助与性别有关?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学中有许多形状优美,寓意美好的曲线,曲线C就是其中之一(如图).给出下列三个结论:

①曲线C恰好经过6个整点(即横、纵坐标均为整数的点);

②曲线C上存在到原点的距离超过的点;

③曲线C所围成的心形区域的面积小于3.其中所有正确结论的个数是( .

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a为常数,函数有两个极值点x1x2,且x1x2,则有(  )

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)当时,求函数的单调区间;

(Ⅱ)若曲线在点处的切线与曲线切于点,求的值;

(Ⅲ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有标号分别为1234566张抗疫宣传海报,要求排成23列,则共有_______种不同的排法,如果再要求每列中前面一张的标号比其后面一张的标号小,则共有_______种不同的排法.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:在直三棱柱中,是棱上一点,的延长线与的延长线的交点,且平面.

1)求证:

2)求二面角的正弦值;

3)若点在线段上,且直线与平面所成的角的正弦值为,求线段的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】指数是用体重公斤数除以身高米数的平方得出的数字,是国际上常用的衡量人体胖瘦程度以及是否健康的一个标准.对于高中男体育特长生而言,当数值大于或等于20.5时,我们说体重较重,当数值小于20.5时,我们说体重较轻,身高大于或等于我们说身高较高,身高小于170cm我们说身高较矮.

1)已知某高中共有32名男体育特长生,其身高与指数的数据如散点图,请根据所得信息,完成下述列联表,并判断是否有的把握认为男生的身高对指数有影响.

身高较矮

身高较高

合计

体重较轻

体重较重

合计

2)①从上述32名男体育特长生中随机选取8名,其身高和体重的数据如表所示:

编号

1

2

3

4

5

6

7

8

身高

166

167

160

173

178

169

158

173

体重

57

58

53

61

66

57

50

66

根据最小二乘法的思想与公式求得线性回归方程为.利用已经求得的线性回归方程,请完善下列残差表,并求(解释变量(身高)对于预报变量(体重)变化的贡献值)(保留两位有效数字);

编号

1

2

3

4

5

6

7

8

体重(kg

57

58

53

61

66

57

50

66

残差

②通过残差分析,对于残差的最大(绝对值)的那组数据,需要确认在样本点的采集中是否有人为的错误,已知通过重新采集发现,该组数据的体重应该为.小明重新根据最小二乘法的思想与公式,已算出,请在小明所算的基础上求出男体育特长生的身高与体重的线性回归方程.

参考数据:

参考公式:

0.10

0.05

0.01

0.005

2.706

3.811

6.635

7.879

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,直线的极坐标方程为.

1)当时,判断直线与曲线的位置关系;

2)若直线与曲线相交所得的弦长为,求的值.

查看答案和解析>>

同步练习册答案