精英家教网 > 高中数学 > 题目详情
14.△ABC的三边长a,b,c和面积S满足S=$\frac{1}{2}$[c2-(a-b)2].
(1)求cosC;
(2)若c=2,且2sinAcosC=sinB,求b的长.

分析 (1)利用三角形面积计算公式、余弦定理即可得出;
(2)利用正弦定理余弦定理即可得出.

解答 解:(1)在△ABC中,∵S=$\frac{1}{2}$[c2-(a-b)2]=$\frac{1}{2}({c}^{2}-{a}^{2}-{b}^{2}+2ab)$=$\frac{1}{2}(2ab-2abcosC)$=$\frac{1}{2}absinC$,
∴sinC+2cosC=2,又sin2C+cos2C=1,解得cosC=$\frac{3}{5}$或1(舍去).
∴cosC=$\frac{3}{5}$.
(2)∵2sinAcosC=sinB,
∴2acosC=b,∴2a×$\frac{3}{5}$=b,化为a=$\frac{5b}{6}$.
由余弦定理可得:cosC=$\frac{{a}^{2}+{b}^{2}-{c}^{2}}{2ab}$=$\frac{(\frac{5b}{6})^{2}+{b}^{2}-{2}^{2}}{2×\frac{5b}{6}×b}$=$\frac{3}{5}$,解得b=$\frac{12}{5}$.

点评 本题考查了三角形面积计算公式、余弦定理正弦定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.设方程x2-$\sqrt{10}$x+2=0的两根为α、β,求$lo{g}_{2}\frac{{α}^{2}-αβ+{β}^{2}}{(α-β)^{2}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.语句“x>0”是命题
B.若命题p为真命题,命题q为假命题,则p∨q为假命题
C.若命题p:?x∈R,x2+1≥0,则$?p:?{x_0}∈R,x_0^2+1≥0$
D.若一个命题的逆命题为假,则它的否命题一定为假

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.强度分别为a,b的两个光源A,B间的距离为d.已知照度与光的强度成正比,与光源距离的平方成反比,比例系数为k(k>0,k为常数).线段AB上有一点P,设AP=x,P点处总照度为y.试就a=8,b=1,d=3时回答下列问题.(注:P点处的总照度为P受A,B光源的照度之和)
(1)试将y表示成关于x的函数,并写出其定义域;
(2)问:x为何值时,P点处的总照度最小?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-π<φ<π),x∈R图象的一条对称轴是$x=\frac{3π}{8}$,且这条对称轴与此函数图象交于点$({\frac{3π}{8},2})$,这条对称轴与相邻对称轴间的曲线交x轴于点$({\frac{5π}{8},0})$.    
(1)求这个函数的解析式.
(2)求函数f(x)在[0,π]内的单调递增区间;
(3)用“五点法”作出函数f(x)在一个周期内的简图.(先列表,后画图)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若函数f(x)=|4x-x2|-a的零点个数为3,则a=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.不等式组$\left\{\begin{array}{l}y≥0\\ y≥x-2\\ y≤\sqrt{x}\end{array}\right.$所围成的封闭图形的面积为(  )
A.$\frac{10}{3}$B.2C.4D.$\frac{17}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在等差数列{an}中,${a_9}=\frac{1}{2}{a_{12}}+6$,则数列{an}的前11项和S11=(  )
A.132B.66C.48D.24

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.方程$a=sin(2x+\frac{π}{3}),x∈[0,\frac{π}{2}]$上有解,则实数a的取值范围(  )
A.[-1,1]B.$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$C.$[-\frac{{\sqrt{3}}}{2},1]$D.[0,1]

查看答案和解析>>

同步练习册答案