| A. | $\frac{10}{3}$ | B. | 2 | C. | 4 | D. | $\frac{17}{5}$ |
分析 由题意画出图象,求出交点坐标,然后利用定积分求封闭图形的面积.
解答 解:由约束条件$\left\{\begin{array}{l}y≥0\\ y≥x-2\\ y≤\sqrt{x}\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{y=\sqrt{x}}\\{y=x-2}\end{array}\right.$,解得:C(4,2),
∴不等式组$\left\{\begin{array}{l}y≥0\\ y≥x-2\\ y≤\sqrt{x}\end{array}\right.$所围成的封闭图形的面积为:
S=${∫}_{0}^{4}\sqrt{x}dx{-∫}_{2}^{4}(x-2)dx$=$\frac{2}{3}{x}^{\frac{3}{2}}{|}_{0}^{4}-(\frac{1}{2}{x}^{2}-2x){|}_{2}^{4}$=$\frac{16}{3}-\frac{6}{3}=\frac{10}{3}$.
故选:A.
点评 本题考查基地的线性规划,考查了利用定积分求曲边梯形的面积,体现了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | “x=-1”是“x2-5x-6=0”的必要不充分条件 | |
| B. | 命题“若x=y,则sin x=sin y”的逆否命题为真命题 | |
| C. | 命题“若x2=1,则x=1”的否命题为:“若x2=1,则x≠1” | |
| D. | 命题“?x∈R,使得:x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0” |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 16 | C. | 8 | D. | 2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com