精英家教网 > 高中数学 > 题目详情

A.不等式选做题)不等式x+|2x-1|<a的解集为φ,则实数a的取值范围是________.
B.(坐标系与参数方程选做题)若直线3x+4y+m=0与曲线ρ2-2ρcosθ+4ρsinθ+4=0没有公共点,则实数m的取值范围是________.

    m<0或m>10.
分析:A 由题意得,|2x-1|≥a-x恒成立,结合图形解出结果.
B 把曲线的极坐标方程化为普通方程,由圆心到直线3x+4y+m=0 的距离大于半径,解不等式求得实数m的取值范围.
解答:A. 不等式 x+|2x-1|<a的解集为φ,即|2x-1|≥a-x恒成立,如图所示:
∴a≤-1,
故答案为:a≤-1.

B  曲线ρ2-2ρcosθ+4ρsinθ+4=0,即x2+y2-2x+4y+4=0,即 (x-1)2+(y+2)2=1,
表示以(1,-2)为圆心,半径等于1的圆.由题意知,圆心到直线3x+4y+m=0 的距离大于半径,
>1,解得 m>10,或  m<0,
故答案为:m>10,或  m<0.
点评:本题考查绝对值不等式的解法,极坐标方程与普通方程的转化,点到直线的距离公式的应用,体现了数形结合的数学思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A(不等式选做题)如果关于x的不等式|x-3|-|x-4|<a的解集不是空集,则实数a的取值范围是
 

B(几何证明选做题)如图,圆O的割线PBA过圆心O,弦CD交AB于点E,且△COE~△PDE,PB=OA=2,则PE的长等于
 

C(极坐标系与参数方程选做题)圆ρ=2COSθ的圆心到直线
x=t
y=
3
t
(t为参数)的距离是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(选做题)(考生注意:请在下列两题中任选一题作答,如果多做,则按所做的第一题评分)
(1)(极坐标系与参数方程选做题)圆ρ=2cosθ的圆心到直线
x=t
y=
3
t
(t为参数)的距离是
 

(2)(不等式选做题)如果关于x的不等式|x-3|-|x-4|<a的解集不是空集,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
(A)(坐标系与参数方程选做题)在直角坐标系x0y中,以原点为极点,x轴非负半轴为极轴建立极坐标系,已知圆C与直线l的方程分别为:ρ=2sinθ,
x=x0+
2
t
y=
2
t
(t为参数).若圆C被直线l平分,则实数x0的值为
-1
-1

(B)(不等式选做题)若关于x的不等式|x-m|<2成立的充分不必要条件是2≤x≤3,则实数m的取值范围是
(1,4)
(1,4)

(C) (几何证明选讲) 如图,割线PBC经过圆心O,OB=PB=1,OB绕点O逆时针旋转120°到OD,连PD交圆O于点E,则PE=
3
7
7
3
7
7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A(不等式选做题)如果关于x的不等式|x-3|-|x-4|<a的解集不是空集,则实数a的取值范围是________;
B(几何证明选做题)如图,圆O的割线PBA过圆心O,弦CD交AB于点E,且△COE~△PDE,PB=OA=2,则PE的长等于________;
C(极坐标系与参数方程选做题)圆ρ=2COSθ的圆心到直线数学公式(t为参数)的距离是________.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年陕西省西安市八校联考高三(上)期末数学试卷(理科)(解析版) 题型:填空题

(考生注意:请在下列三题中任选一题作答,如果多做,则按所做的第一题评分)
A(不等式选做题)如果关于x的不等式|x-3|-|x-4|<a的解集不是空集,则实数a的取值范围是   
B(几何证明选做题)如图,圆O的割线PBA过圆心O,弦CD交AB于点E,且△COE~△PDE,PB=OA=2,则PE的长等于   
C(极坐标系与参数方程选做题)圆ρ=2COSθ的圆心到直线(t为参数)的距离是   

查看答案和解析>>

同步练习册答案