精英家教网 > 高中数学 > 题目详情
9.已知直线l的方向向量为$\overrightarrow{a}$=(1,0,2),平面α的法向量$\overrightarrow{n}$=(-1,0,-2),则(  )
A.l?αB.l⊥αC.l∥αD.l与α斜交

分析 由已知可得:$\overrightarrow{n}=-\overrightarrow{a}$,因此$\overrightarrow{n}∥\overrightarrow{a}$,再利用线面垂直的判定即可得出.

解答 解:∵直线l的方向向量为$\overrightarrow{a}$=(1,0,2),平面α的法向量$\overrightarrow{n}$=(-1,0,-2),$\overrightarrow{n}=-\overrightarrow{a}$,
∴$\overrightarrow{n}∥\overrightarrow{a}$,
∴l⊥α.
故选:B.

点评 本题考查了向量共线定理、线面垂直的判定定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)是定义在R上的奇函数,当x∈[0,1)时,f(x)=x,则$f({-\frac{1}{2}})$=$-\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.菱形ABCD中,AB=1,∠BAD=$\frac{π}{3}$,点E,F分别在边BC,CD上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{CF}$=(1-λ)$\overrightarrow{CD}$.
(1)求$\overrightarrow{AB}$•$\overrightarrow{AC}$的值;
(2)求$\overrightarrow{AE}$•$\overrightarrow{BF}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设向量$\overrightarrow{{a}_{n}}$=(sin$\frac{nπ}{3}$,cos$\frac{nπ}{3}$),$\overrightarrow{{b}_{n}}$=(sin$\frac{nπ}{4}$,cos$\frac{nπ}{4}$)(n∈N+),则$\sum_{n=1}^{12}$($\overrightarrow{{a}_{n}}$•$\overrightarrow{{b}_{n}}$)=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,某景区有一座高AD为1千米的山,山顶A处可供游客观赏日出,坡角∠ACD=30°,在山脚有一条长为10千米的小路BC,且BC与CD垂直,为方便游客,该景区拟在小路BC上找一点M,建造两条直线型公路BM和MA,其中公路BM每千米的造价为30万元,公路MA每千米造价为30万元.
(1)设∠AMC=θ,求出造价y关于θ的函数关系式;
(2)当BM长为多少米时才能使造价y最低?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l:2x+(m+1)y+2m=0(m∈R)在x轴上的截距等于它在y轴上的截距的2倍,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=($\frac{x-1}{x+1}$)2(x>1).
(1)求函数f(x)的反函数f-1(x);
(2)用单调性的定义证明:f-1(x)在定义域上为增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.某几何体的三视图如图所示,则此几何体的体积为2π+4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知O为平行四边形ABCD内部一点,且$\overrightarrow{OA}$+2$\overrightarrow{OB}$+2$\overrightarrow{OC}$+$\overrightarrow{OD}$=$\overrightarrow{0}$,则△OAD的面积与△OBC的面积比值是2.

查看答案和解析>>

同步练习册答案