精英家教网 > 高中数学 > 题目详情
(2011•宁波模拟)设
OM
=(1,
1
2
),
ON
=(0,1)
,O为坐标原点,动点P(x,y)满足0≤
OP
OM
≤1,0≤
OP
ON
≤1
,则z=y-x的最大值是(  )
分析:
OP
OM
= x+
1
2
y
OP
ON
=y
0≤
OP
OM
≤1,0≤
OP
ON
≤1
可得
0≤x+
1
2
y≤ 1
0≤y≤1
,利用线性规划的知识可求Z的最大值
解答:解:∵点P(x,y)∴
OP
=(x,y)

OM
=(1,
1
2
),
ON
=(0,1)

OP
OM
= x+
1
2
y
OP
ON
=y

0≤
OP
OM
≤1,0≤
OP
ON
≤1

0≤x+
1
2
y≤ 1
0≤y≤1

作出该不等式组所确定的平面区域,如图所示的阴影部分,作直线L:y-x=0,然后把直线L向可行域方向平移,
由目标函数Z=y-x可得y=x+Z,则Z为直线y=x+z在y轴的截距,从而可知向上平移是,Z变大,向下平移时,Z变小
到A时Z有最大值,当移到C时Z最小值
y=1
2x+y=0
可得A(-
1
2
,1
),此时Z最大=y-x=
3
2

y=0
2x+y=2
可得C(1,0),此时Z最小=y-x=-1
即Z的最大值为
3
2

故选A
点评:本题以向量的数量积的坐标表示为载体,主要考查了利用线性规划的知识求解目标函数的最值,属于知识的综合性应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•宁波模拟)已知某商场新进3000袋奶粉,为检查其三聚氰胺是否超标,现采用系统抽样的方法从中抽取150袋检查,若第一组抽出的号码是11,则第六十一组抽出的号码为
1211
1211

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宁波模拟)如图,△ABC中,
GA
+
GB
+
GC
=
O
CA
=
a
CB
=
b
,若
CP
=m
a
CQ
=n
b
,CG∩PQ=H,
CG
=2
CH
,则
1
m
+
1
n
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宁波模拟)已知:圆x2+y2=1过椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的两焦点,与椭圆有且仅有两个公共点:直线y=kx+m与圆x2+y2=1相切,与椭圆
x2
a2
+
y2
b2
=1
相交于A,B两点记λ=
OA
OB
,且
2
3
≤λ≤
3
4

(Ⅰ)求椭圆的方程;
(Ⅱ)求k的取值范围;
(Ⅲ)求△OAB的面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•宁波模拟)集合P={n|n=lnk,k∈N*},若a,b∈P,则a⊕b∈P,那么运算⊕可能是(  )

查看答案和解析>>

同步练习册答案