精英家教网 > 高中数学 > 题目详情
已知函数,满足
(1)求常数c的值;
(2)解关于的不等式
(1) ;(2) .

试题分析:(1)代入解析式,列出关于c的方程,解出c,注意范围;(2)根据分段函数通过分类讨论列出不等式,解出的范围,解不等式时不要忘记分类条件.
试题解析:(1)∵,即
解得.                               5分
(2)由(1)得
,得当时,,解得;         9分
时,,解得.                12分
∴不等式的解集为.                    13分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

某公司为一家制冷设备厂设计生产某种型号的长方形薄板,其周长为4m.这种薄板须沿其对角线折叠后使用.如图所示,ABCD(AB>AD)为长方形薄板,沿AC折叠后AB′交DC于点P.当△ADP的面积最大时最节能,凹多边形ACB′PD的面积最大时制冷效果最好.
(1)设AB=xm,用x表示图中DP的长度,并写出x的取值范围;
(2)若要求最节能,应怎样设计薄板的长和宽?
(3)若要求制冷效果最好,应怎样设计薄板的长和宽?

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的容积为立方米,且l≥2r.假设该容器的建造费用仅与其表面积有关,已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.

①写出y关于r的函数表达式,并求该函数的定义域;
②求该容器的建造费用最小时的r.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=则不等式f(x)>f(1)的解集是(  )
A.(-3,1)∪(3,+∞)B.(-3,1)∪(2,+∞)
C.(-1,1)∪(3,+∞)D.(-∞,-3)∪(1,3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)的图象向右平移1个单位长度,所得图象与曲线y=ex关于y轴对称,则f(x)=(  )
A.ex+1B.ex-1
C.e-x+1D.e-x-1

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若函数在区间内有一个零点,则实数的取值可以是(   )
A.     B.   C.    D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,偶函数f(x)的图像形如字母M,奇函数g(x)的图像形如字母N,若方程的实根个数分别为a,b,则a+b=
A.18B.21C.24D.2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

某投资公司投资甲、乙两个项目所获得的利润分别是P(亿元)和Q(亿元),它们与投资额t(亿元)的关系有经验公式P=,Q=t,今该公司将5亿元投资于这两个项目,其中对甲项目投资x(亿元),投资这两个项目所获得的总利润为y(亿元).求:
(1)y关于x的函数表达式.
(2)总利润的最大值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对a,b∈R,记max(a,b)=函数f(x)=max(|x+1|,-x2+1)的最小值是   .

查看答案和解析>>

同步练习册答案