精英家教网 > 高中数学 > 题目详情
已知如图,抛物线y=ax2+bx+2与x轴的交点是A(3,0)、B(6,0),与y轴的交点是C.
(1)求抛物线的函数表达式;
(2)设P(x,y)(0<x<6)是抛物线上的动点,过点P作PQy轴交直线BC于点Q.
①当x取何值时,线段PQ的长度取得最大值,其最大值是多少?
②是否存在这样的点P,使∠OQA为直角?若存在,求出点P的坐标;若不存在,请说明理由.
(1)∵抛物线过A(3,0),B(6,0),
9a+3b+2=0
36a+6b+2=0

解得:
a=
1
9
b=-1

∴所求抛物线的函数表达式是y=
1
9
x2-x+2

(2)①∵当x=0时,y=2,
∴点C的坐标为(0,2),
设直线BC的函数表达式是y=kx+b,
则有
6k+b=0
b=2

解得:
k=-
1
3
b=2

∴直线BC的函数表达式是y=-
1
3
x+2

∵0<x<6,
PQ=yQ-yP=(-
1
3
x+2)-(
1
9
x2-x+2)
=-
1
9
x2+
2
3
x

=-
1
9
(x-3)2+1

∴当x=3时,线段PQ的长度取得最大值,最大值是1;
②存在这样的点P(
3
2
3
4
)
P(
12
5
6
25
)
,使∠OQA为直角.
事实上,
当∠OQA=90°时,设PQ与x轴交于点D,
∵∠ODQ+∠ADQ=90°,∠QAD+∠AQD=90°,∴∠OQD=∠QAD,
又∵∠ODQ=∠QDA=90°,∴△ODQ△QDA,
DQ
OD
=
DA
DQ
,即DQ2=OD•DA.
(-
1
3
x+2)2=x(3-x)
,整理得:10x2-39x+36=0.
x1=
3
2
x2=
12
5

y1=
1
9
×(
3
2
)2-
3
2
+2=
3
4
y2=
1
9
×(
12
5
)2-
3
2
+2=
6
25

P(
3
2
3
4
)
P(
12
5
6
25
)

∴所求的点P的坐标是P(
3
2
3
4
)
P(
12
5
6
25
)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,半圆的直径的长为4,点平分弧,过的垂线交,交
(1)求证:
(2)若的角平分线,求的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若直线y=kx+2与曲线y=
x2-1
,|x|>1
1-x2
,|x|≤1
恰有两个不同的交点,则k∈______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C1x2-
y2
4
=1

(1)求与双曲线C1有相同焦点,且过点P(4,
3
)的双曲线C2的标准方程;
(2)直线l:y=x+m分别交双曲线C1的两条渐近线于A、B两点.当
OA
OB
=3
时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知直线l与椭圆
x2
36
+
y2
9
=1
交于A和B两点,点(4,2)是线段AB的中点,则直线l的方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图椭圆C的方程为
y2
a2
+
x2
b2
=1(a>b>0)
,A是椭圆C的短轴左顶点,过A点作斜率为-1的直线交椭圆于B点,点P(1,0),且BPy轴,△APB的面积为
9
2

(1)求椭圆C的方程;
(2)在直线AB上求一点M,使得以椭圆C的焦点为焦点,且过M的双曲线E的实轴最长,并求此双曲线E的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆E:(x+
3
2+y2=16,点F(
3
,0),P是圆E上任意一点.线段PF的垂直平分线和半径PE相交于Q.
(Ⅰ)求动点Q的轨迹Γ的方程;
(Ⅱ)已知A,B,C是轨迹Γ的三个动点,A与B关于原点对称,且|CA|=|CB|,问△ABC的面积是否存在最小值?若存在,求出此时点C的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xoy中,已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)经过点M(3
2
2
),椭圆的离心率e=
2
2
3

(1)求椭圆C的方程;
(2)过点M作两直线与椭圆C分别交于相异两点A、B.若∠AMB的平分线与y轴平行,试探究直线AB的斜率是否为定值?若是,请给予证明;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若点P(2,-1)平分椭圆
x2
12
+
y2
8
=1
的一条弦,则该弦所在的直线方程为______.(结果写成一般式)

查看答案和解析>>

同步练习册答案