精英家教网 > 高中数学 > 题目详情

已知函数f(x)=数学公式
(I)解关于x的不等式f(x)≤1;
(II)若1≤x≤2,判断函数h(x)=2xf(x)-5x2+6x-3的零点个数,并说明理由.

解:(I)∵函数f(x)=
∴不等式f(x)≤1可化为:
…①或…②,
解①得x=1,解②得x<1
综上所述原不等式的解集为(-∞,1]
(II)当1≤x≤2时,函数h(x)=2xf(x)-5x2+6x-3=2x3-7x2+8x-3
∴h′(x)=6x2-14x+8=(6x-8)(x-1)
当1<x<时,h′(x)<0,h(x)为减函数;
<x<2时,h′(x)>0,h(x)为增函数;
故当x=时,h(x)取最小值
又∵h(1)=0,h(2)=1>0
故函数h(x)=2xf(x)-5x2+6x-3在区间[1,2]上有2个零点
分析:(I)根据分段函数分段处理的原则,可将不等式f(x)≤1化为,分别解答后,综合讨论结果,可得答案.
(II)由(I)中函数的解析式,可得1≤x≤2时,函数h(x)=2xf(x)-5x2+6x-3的解析式,利用导数法分析其单调性及极值,进而可由零点存在定理,判断出函数零点的个数.
点评:本题考查的知识点是根的存在性及根的个数判断,分段函数,其中(I)的关键是“分段函数分类讨论”,(II)的关键是求出函数h(x)的解析式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案