精英家教网 > 高中数学 > 题目详情

已知双曲线数学公式的左、右焦点分别为F1、F2,P为左支一点,P到左准线的距离为d,若d,|PF1|,|PF2|成等比数列,则该双曲线的离心率的取值范围是


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    数学公式
  4. D.
    数学公式
D
分析:将等比数列的概念与双曲线的第二定义结合,再利用双曲线的简单性质得到|PF1|与其离心率e的关系,通过不等式|PF1|≥c-a即可求得该双曲线的离心率的取值范围.
解答:∵该双曲线的左、右焦点分别为F1、F2,又P为左支一点,则|PF2|-|PF1|=2a,
设双曲线的离心率为e,依题意,==e,
=e,
=e-1,即=e-1,
∴|PF1|=,又|PF1|≥c-a,
≥c-a,又c>a,
∴0<,即(e-1)≤
∴(e-1)2,又e=>1
∴1<e≤1+
故选D.
点评:本题考查等比数列的性质,考查双曲线的第二定义及双曲线的简单性质,突出转化思想与不等式的应用,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知双曲线C:
x2
9
-
y2
16
=1
的左、右焦 点分别为F1、F2,P为C的右支上一点,且|
PF2
|=|
F1F2
|,则△PF1F2
的面积等于
 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年贵州省高三第一次月考文科数学 题型:解答题

(本小题满分12分)已知椭圆的方程为 ,双曲线的左、右焦

 

点分别是的左、右顶点,而的左、右顶点分别是的左、右焦点.

(1)求双曲线的方程;                                             

(2)若直线与双曲线C2恒有两个不同的交点A和B,求的范围。

 

查看答案和解析>>

科目:高中数学 来源:2011年广西桂林市高三第一次联合调研数学试卷(文科)(解析版) 题型:解答题

已知双曲线的左、右焦 点分别为F1、F2,P为C的右支上一点,且的面积等于   

查看答案和解析>>

科目:高中数学 来源:2011年广西桂林市高三第一次调研数学试卷(理科)(解析版) 题型:解答题

已知双曲线的左、右焦 点分别为F1、F2,P为C的右支上一点,且的面积等于   

查看答案和解析>>

同步练习册答案