精英家教网 > 高中数学 > 题目详情
(2013•滨州一模)已知抛物线y2=-8x的准线过双曲线
x2
m
-
y2
3
=1
的右焦点,则双曲线的离心率为
2
2
分析:抛物线y2=-8x的准线为 x=2,故有c2=m+3=4,求得c值,即得双曲线的离心率的值.
解答:解:抛物线的焦点坐标为(-2,0)),准线方程为x=2.
则c=2.所以c2=m+3=4,解得m=1,
所以双曲线的离心率为e=
c
a
=2,
故答案为:2.
点评:本题考查抛物线的标准方程,以及简单性质,双曲线的标准方程,以及双曲线的简单性质的应用,得到c2=m+3=4,求出c值,是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•滨州一模)已知{an}为等差数列,其前n项和为Sn,若a3=6,S3=12,则公差d等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•滨州一模)执行框图,若输出结果为3,则可输入的实数x值的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•滨州一模)已知
a-2i
i
=b+i(a,b∈R,i为虚数单位)
,则a-b=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•滨州一模)“10a>10b”是“lga>lgb”的(  )

查看答案和解析>>

同步练习册答案