精英家教网 > 高中数学 > 题目详情

已知数列{an}中,an=-4n+5,等比数列{bn}的公比q满足q=an-an-1(n≥2),且b1=a2,则|b1|+|b2|+…+|bn|=


  1. A.
    1-4n
  2. B.
    4n-1
  3. C.
    数学公式
  4. D.
    数学公式
B
分析:先由an=-4n+5及q=an-an-1求出q,再由b1=a2,求出b1,从而得到bn,进而得到|bn|,根据等比数列前n项和公式即可求得|b1|+|b2|+…+|bn|.
解答:q=an-an-1=(-4n+5)-[-4(n-1)+5]=-4,b1=a2=-4×2+5=-3,
所以=-3•(-4)n-1,|bn|=|-3•(-4)n-1|=3•4n-1
所以|b1|+|b2|+…+|bn|=3+3•4+3•42+…+3•4n-1=3•=4n-1,
故选B.
点评:本题考查等差、等比数列通项公式及等比数列的前n项和公式,考查学生的运算能力,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案