精英家教网 > 高中数学 > 题目详情

已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足||=·()+2.

(1)求曲线C的方程;

(2)点Q(x0,y0)(-2<x0<2)是曲线C上的动点,曲线C在点Q处的切线为,点P的坐标是(0,-1),与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.

 

【答案】

(1)曲线C的方程是;(2)△QAB与△PDE的面积之比.

【解析】

试题分析:(1)将向量式化为坐标式,即可得曲线C的方程是.(2)曲线C在Q处的切线的方程是, 且与y轴的交点为

再联立直线PA,PB与曲线C的方程,得

利用韦达定理计算,由三角形的面积公式有,因为的距离为,则.

试题解析:解:(1)由

  

由已知得, 化简得曲线C的方程是.

(2)直线PA,PB的方程分别是, 曲线C在Q处的切线l的方程是, 且与y轴的交点为

分别联立方程,得

解得D,E的横坐标分别是, 则

,则.

即△QAB与△PDE的面积之比为2.

考点:1、向量的坐标式、向量的模、数量积的坐标运算;2、曲线的切线方程;3、韦达定理;4、三角形的面积公式及三角形面积的分割求法.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知三点O(0,0),A(1,0),P(x,y)且设x≥1,y≠0.
(1)如果选取一点Q,使四边形OAPQ成为一平行四边形,则Q的坐标是
 

(2)如果还要求AP的中垂线通过Q点,则x,y的关系是
 

(3)再进一步要求四边形OAPQ是菱形,则x=
 
时.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xoy中,已知三点O(0,0),A(-1,1),B(1,1),曲线C上任意-点M(x,y)满足:|
MA
+
MB
|=4-
1
2
OM
•(
OA
+
OB
)

(l)求曲线C的方程;
(2)设点P是曲线C上的任意一点,过原点的直线L与曲线相交于M,N两点,若直线PM,PN的斜率都存在,并记为kPM,kPN.试探究kPM•kPN的值是否与点P及直线L有关,并证明你的结论;
(3)设曲线C与y轴交于D、E两点,点M (0,m)在线段DE上,点P在曲线C上运动.若当点P的坐标为(0,2)时,|
MP
|
取得最小值,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足|
MA
+
MB
|=
OM
•(
OA
+
OB
)+2.
(1)求曲线C的方程;
(2)动点Q(x0,y0)(-2<x0<2)在曲线C上,曲线C在点Q处的切线为l向:是否存在定点P(0,t)(t<0),使得l与PA,PB都不相交,交点分别为D,E,且△QAB与△PDE的面积之比是常数?若存在,求t的值.若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)已知三点O(0,0),A(-2,1),B(2,1),曲线C上任意一点M(x,y)满足|
MA
+
MB
|=
MA
•(
OA
+
OB
)+2

(1)求曲线C的方程;
(2)点Q(x0,y0)(-2<x0<2)是曲线C上动点,曲线C在点Q处的切线为l,点P的坐标是(0,-1),l与PA,PB分别交于点D,E,求△QAB与△PDE的面积之比.

查看答案和解析>>

同步练习册答案