精英家教网 > 高中数学 > 题目详情

以实数x,-x,|x|,数学公式数学公式为元素所组成的集合最多含有


  1. A.
    2个元素
  2. B.
    3个元素
  3. C.
    4个元素
  4. D.
    5个元素
A
分析:本题考查的是元素与稽核的关系问题.在解答时首先要考虑好几何元素的特征特别是互异性,然后利用指数运算的法则对所给实数进行化简,即可获得问题的解答.
解答:由题意可知:

并且|x|=±x
所以,以实数x,-x,|x|,为元素所组成的集合最多含有x,-x两个元素.
故选:A.
点评:本题考查的是元素与稽核的关系问题.在解答时充分体现了几何元素的特征、知识的运算等知识.值得同学们体会和反思.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=lnx,g(x)=
a
x
,设F(x)=f(x)+g(x).
(Ⅰ)当a=1时,求函数F(x)的单调区间;
(Ⅱ)若以函数y=F(x)(0<x≤3)图象上任意一点P(x0,y0)为切点的切线斜率k≤
1
2
恒成立,求实数a的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

以实数x,-x,|x|,
x2
-
3x3
为元素所组成的集合最多含有(  )
A、2个元素B、3个元素
C、4个元素D、5个元素

查看答案和解析>>

科目:高中数学 来源: 题型:

下列命题中
①对于每一个实数x,f(x)是y=2-x2和y=x这两个函数中的较小者,则f(x)的最大值是1.
②已知x1是方程x+lgx=3的根,x2是方程x+10x=3的根,则x1+x2=3.
③函数f(x)=ax2+bx+3a+b是偶函数,其定义域为[a-1,2a],则f(x)的图象是以(0,1)为顶点,开口向下的抛物线.
④若集合P={x|x=3m+1,m∈N+},Q={x|x=5n+2,n∈N+},则P∩Q={x|x=15m-8,m∈N+}
⑤若函数f(x)在(-∞,+∞)上递增,且a+b≥0,则f(a)+f(b)≥f(-a)+f(-b).
其中正确的命题的序号是
①②④⑤
①②④⑤

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•茂名二模)已知函数f(x)=-x3+x2+bx,g(x)=alnx,(a>0).
(1)当a=x时,求函数g(x)的单调区间;
(2)若f(x)存在极值点,求实数b的取值范围;
(3)当b=0时,令F(x)=
f(x),x<1
g(x),x≥1
.P(x1,F(x1)),Q(x2,F(x2))为曲线y=F(x)上的两动点,O为坐标原点,能否使得△POQ是以O为直角顶点的直角三角形,且斜边中点在y轴上?请说明理由.

查看答案和解析>>

同步练习册答案