精英家教网 > 高中数学 > 题目详情

已知向量数学公式,设函数数学公式
(1)求f(x)的最小正周期与单调递减区间
(2)在△ABC中,a、b、c分别是角A、B、C的对边,若f(A)=4,b=1,△ABC的面积为数学公式,求a的值.

解:(1)∵
===



∴f(x)的单调区间为,k∈Z
(2)由f(A)=4得

又∵A为△ABC的内角





∴c=2


分析:(1)用向量的数量积法则及三角函数的二倍角公式化简f(x),再用三角函数的周期公式和整体代换的方法求出周期和单调区间
(2)用三角形的面积公式和余弦定理列方程求.
点评:本题考查向量的运算法则、三角函数的二倍角公式、三角函数的面积公式、三角函数的余弦定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(本小题满分14分)

已知向量,设函数

   (1)求的单调递减区间。

   (2)在中,分别是角的对边,若的面积为,求的值。

查看答案和解析>>

科目:高中数学 来源:2013-2014学年黑龙江哈师大附中高三上期期中考试理科数学试卷(解析版) 题型:解答题

已知向量,设函数的图象关于直线对称,其中常数

(Ⅰ)求的最小正周期;

(Ⅱ)将函数的图像向左平移个单位,得到函数的图像,用五点法作出函数在区间的图像.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年湖南省衡阳八中高一(下)期中数学试卷(解析版) 题型:解答题

已知向量,设函数
(1)写出函数f(x)的单调递增区间;
(2)若x求函数f(x)的最值及对应的x的值;-
(3)若不等式|f(x)-m|<1在x恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010年广东省广州七中高三考前热身训练数学试卷(文科)(解析版) 题型:解答题

已知向量,设函数
(1)求函数f(x)的值域;
(2)已知锐角△ABC的三个内角分别为A,B,C,若,求f(A+B)的值.

查看答案和解析>>

科目:高中数学 来源:2012-2013学年湖北七市(州)高三年级联合考试理科数学试卷(解析版) 题型:解答题

已知向量设函数.

的最小正周期与单调递增区间;

中,分别是角的对边,若,求的最大值.

 

查看答案和解析>>

同步练习册答案