过抛物线C:
上的点M分别向C的准线和x轴作垂线,两条垂线及C的准线和x轴围成边长为4的正方形,点M在第一象限.
(1)求抛物线C的方程及点M的坐标;
(2)过点M作倾斜角互补的两条直线分别与抛物线C交于A,B两点,且直线AB过点(0,-1),求
的面积.
(1)y2=8x,(2,4);(2)
.
【解析】
试题分析:本题主要考查抛物线的标准方程及其几何性质、韦达定理、点到直线的距离、三角形面积公式等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,由题意结合抛物线图象得到M点坐标,代入抛物线方程中,解出P的值,从而得到抛物线的标准方程及M点坐标;第二问,设出A,B点坐标,利用M点,分别得到直线MA和直线MB的斜率,因为两直线倾斜角互补,所以两直线的斜率相加为0,整理得到y1+y2=-8,代入到
中得到直线AB的斜率,于是得到直线AB的方程,令直线与抛物线联立,得到
,而
,
,而
用两点间距离公式转化,d是M到直线AB的距离,从而得到
的面积.
(1)抛物线C的准线x=-
,依题意M(4-
,4),
则42=2p(4-
),解得p=4.
故抛物线C的方程为y2=8x,点M的坐标为(2,4), 3分
(2)设
.
直线MA的斜率
,同理直线MB的斜率
.
由题设有
,整理得y1+y2=-8.
直线AB的斜率
. 6分
于是直线AB的方程为y=-x-1.
由
得y2+8y+8=0.
|y1-y2|=
=
,
于是|AB|=
|y1-y2|=8. 10分
点M到直线AB的距离
,
则△MAB的面积S=
|AB|·d=
. 12分
考点:抛物线的标准方程及其几何性质、韦达定理、点到直线的距离、三角形面积公式.
科目:高中数学 来源:2013-2014学年河北省唐山市高三年级第二次模拟考试理科数学试卷(解析版) 题型:解答题
甲向靶子A射击两次,乙向靶子射击一次.甲每次射击命中靶子的概率为0.8,命中得5分;乙命中靶子的概率为0.5,命中得10分.
(1)求甲、乙二人共命中一次目标的概率;
(2)设X为二人得分之和,求X的分布列和期望.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河北省唐山市高三年级第三次模拟考试理科数学试卷(解析版) 题型:选择题
右上图是某几何体的三视图,则该几何体的体积等于( )
A.1 B.
C.
D.![]()
![]()
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河北省唐山市高三年级第三次模拟考试文科数学试卷(解析版) 题型:选择题
右上图是某几何体的三视图,则该几何体的体积等于( )
A.1 B.
C.
D.![]()
![]()
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河北省高三下学期调研考试理科数学试卷(解析版) 题型:填空题
把边长为1的正方形ABCD沿对角线BD折起,形成三棱锥C-ABD,它的主视图与俯视图如右上图所示,则二面角 C-AB-D的正切值为 .
![]()
查看答案和解析>>
科目:高中数学 来源:2013-2014学年河北省高三年级模拟考试理科数学试卷(解析版) 题型:解答题
已知椭圆
的离心率为
,以原点为圆心,椭圆短半轴长为半径的圆与直线
相切.
(1)求椭圆
的标准方程;
(2)过右焦点
作斜率为
的直线
交曲线
于
、
两点,且
,又点
关于原点
的对称点为点
,试问
、
、
、
四点是否共圆?若共圆,求出圆心坐标和半径;若不共圆,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com