精英家教网 > 高中数学 > 题目详情

【题目】某小学为了解本校某年级女生的身高情况,从本校该年级的女学生中随机选出100名并统计她们的身高(单位:cm),得到的频数分布表如下:

分组

频数

20

20

50

10

1)用分层抽样的方法从身高在的女生中共抽取6人,则身高在内的女生应抽取几人?

2)在(1)中抽取的6人中,再随机抽取2人,求这2人身高都在内的概率.

【答案】14人;(2.

【解析】

1)根据身高在女生人数比例为,利用分层抽样的方法,可得结果.

2)根据(1)中各段抽取出的女生分别进行标记,利用列举法,列举出所有可能情况,并计算这2人身高都在内的数目,根据古典概型概念可得结果.

1)身高在内的女生应该抽取:

(人)

2)在(1)中抽取的6名女生中,

4人身高在中,2人身高在中,

记身高在中的4人分别为

身高在中的2人分别为.

从这6人中随机抽取2人,基本事件包含:

,共有15.

其中2人身高都在内的情况:

共有6.

则这2人身高都在内的概率为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】军训时,甲、乙两名同学进行射击比赛,共比赛10场,每场比赛各射击四次,且用每场击中环数之和作为该场比赛的成绩.数学老师将甲、乙两名同学的10场比赛成绩绘成如图所示的茎叶图,并给出下列4个结论:(1)甲的平均成绩比乙的平均成绩高;(2)甲的成绩的极差是29;(3)乙的成绩的众数是21;(4)乙的成绩的中位数是18.则这4个结论中,正确结论的个数为(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十七世纪法国数学家费马提出猜想:“当整数时,关于的方程没有正整数解”.经历三百多年,于二十世纪九十年中期由英国数学家安德鲁怀尔斯证明了费马猜想,使它终成费马大定理,则下面说法正确的是( )

A. 存在至少一组正整数组使方程有解

B. 关于的方程有正有理数解

C. 关于的方程没有正有理数解

D. 当整数时,关于的方程没有正实数解

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面,且分别是的中点.

(1)求证:平面平面

(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某城市收集并整理了该市20191月份至10月份各月最低气温与最高气温(单位:)的数据,绘制了下面的折线图.

已知该城市各月的最低气温与最高气温具有较好的线性关系,则根据折线图,下列结论正确的是

A.最低气温与最高气温为正相关B.10月的最高气温不低于5月的最高气温

C.月温差(最高气温减最低气温)的最大值出现在1D.最低气温低于0 的月份有4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量是平面内的一组基向量,内的定点,对于内任意一点时,则称有序实数对为点的广义坐标,若点的广义坐标分别为,对于下列命题:

线段的中点的广义坐标为

A两点间的距离为

向量平行于向量的充要条件是

向量垂直于向量的充要条件是.

其中的真命题是________(请写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对于给定数列,若数列满足:对任意,都有,则称数列是数列的“相伴数列”.

(1)若,且数列是数列的“相伴数列”,试写出的一个通项公式,并说明理由;

(2)设,证明:不存在等差数列,使得数列是数列的“相伴数列”;

(3)设,(其中),若是数列的“相伴数列”,试分析实数b、q的取值应满足的条件.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】均为正整数,且为一素数,进制表示分别为,其中,.证明:

(1)若,且对整数 均有,则,其中,表示不超过实数的最大整数.

(2) ,其中,表示集合A中元素的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若为偶函数,求的值并写出的增区间;

(Ⅱ)若关于的不等式的解集为,当时,求的最小值;

(Ⅲ)对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案