精英家教网 > 高中数学 > 题目详情
(2012•朝阳区一模)已知集合A={(x,y)|x2+y2≤4},集合B={(x,y)|y≥m|x|,m为正常数}.若O为坐标原点,M,N为集合A所表示的平面区域与集合B所表示的平面区域的边界的交点,则△MON的面积S与m的关系式为
4m
1+m2
4m
1+m2
分析:集合A={(x,y)|x2+y2≤4},集合B={(x,y)|y≥m|x|,m为正常数},在平面中作出A和B的图象,由此能求出平面区域的边界的交点,从而得到△MON的面积S与m的关系式.
解答:解:∵集合A={(x,y)|x2+y2≤4},表示一个圆内的部分;
集合B={(x,y)|y≥m|x|,m为正常数},表示角形区域部分;
在平面中作出A和B的边界的图象,
结合图象,知,集合A所表示的平面区域与集合B所表示的平面区域的边界的交点N,M的坐标分别为:N(
4
1+m2
,m
4
1+m2
),M(-
4
1+m2
,m
4
1+m2
).
则△MON的面积S与m的关系式为S=
1
2
×(2
4
1+m2
)×m
4
1+m2
=
4m
1+m2

故答案为:
4m
1+m2
点评:本题考查二元一次不等式(组)与平面区域,解题时要认真审题,仔细解答,注意数形结合的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•朝阳区一模)某次有1000人参加的数学摸底考试,其成绩的频率分布直方图如图所示,规定85分及其以上为优秀.
(Ⅰ)下表是这次考试成绩的频数分布表,求正整数a,b的值;
区间 [75,80) [80,85) [85,90) [90,95) [95,100]
人数 50 a 350 300 b
(Ⅱ)现在要用分层抽样的方法从这1000人中抽取40人的成绩进行分析,求其中成绩为优秀的学生人数;
(Ⅲ)在(Ⅱ)中抽取的40名学生中,要随机选取2名学生参加座谈会,记“其中成绩为优秀的人数”为X,求X的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x).当0≤x≤1时,f(x)=x2.若直线y=x+a与函数y=f(x)的图象有两个不同的公共点,则实数a的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)已知函数f(x)=
(
1
2
)
x
+
3
4
x≥2
log2x,0<x<2
若函数g(x)=f(x)-k有两个不同的零点,则实数k的取值范围是
3
4
,1)
3
4
,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)某企业员工500人参加“学雷锋”志愿活动,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50],得到的频率分布直方图如图所示.
(Ⅰ)下表是年龄的频数分布表,求正整数a,b的值;
区间 [25,30) [30,35) [35,40) [40,45) [45,50]
人数 50 50 a 150 b
(Ⅱ)现在要从年龄较小的第1,2,3组中用分层抽样的方法抽取6人,年龄在第1,2,3组的人数分别是多少?
(Ⅲ)在(Ⅱ)的前提下,从这6人中随机抽取2人参加社区宣传交流活动,求至少有1人年龄在第3组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•朝阳区一模)复数
10i
1-2i
=(  )

查看答案和解析>>

同步练习册答案