设f(x)是定义在R上的偶函数,且f(2+x)=f(2﹣x),当x∈[﹣2,0)时,f(x)=
﹣1,若在区间(﹣2,6)内的关于x的方程f(x)﹣loga(x+2)=0(a>0且a≠1)恰有4个不同的实数根,则实数a的取值范围是( )
|
| A. | ( | B. | (1,4) | C. | (1,8) | D. | (8,+∞) |
D
解:∵当x∈[﹣2,0)时,f(x)=
﹣1,∴当x∈(0,2]时,﹣x∈[﹣2,0),
∴f(﹣x)=
﹣1=
﹣1,又f(x)是定义在R上的偶函数,∴f(x)=
﹣1(0<x≤2),又f(2+x)=f(2﹣x),∴f(x)的图象关于直线x=2对称,且f(4+x)=f(﹣x)=f(x),∴f(x)是以4为周期的函数,
∵在区间(﹣2,6)内的关于x的方程f(x)﹣loga(x+2)=0(a>0且a≠1)恰有4个不同的实数根,
令h(x)=loga(x+2),即f(x)=h(x)=loga(x+2)在区间(﹣2,6)内有有4个交点,
在同一直角坐标系中作出f(x)与h(x)=loga(x+2)在区间(﹣2,6)内的图象,∴0<loga(6+2)<1,∴a>8.故选D.
![]()
科目:高中数学 来源: 题型:
已知函数f(x)=loga(1﹣x)+loga(x+3),其中0<a<1,记函数f(x)的定义域为D.
(1)求函数f(x)的定义域D;
(2)若函数f(x)的最小值为﹣4,求a的值;
(3)若对于D内的任意实数x,不等式﹣x2+2mx﹣m2+2m<1恒成立,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
用水清洗一堆蔬菜上残留的农药,对用一定量的水清洗一次的效果作如下假定:用一个单位的水可洗掉蔬菜上残留农药的
,用水越多洗掉的农药量也越多,但总还有农药残留在蔬菜上.设用
单位量的水清洗一次以后,蔬菜上残留的农药量与本次清洗前残留的农药量之比为函数
.⑴试规定
的值,并解释其实际意义;
⑵试根据假定写出函数
应满足的条件和具有的性质;
⑶设
,现有
单位量的水,可以清洗一次,也可以把水平均分成两份后清洗两次.试问用那种方案清洗后蔬菜上残留的农药量比较少?说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
对于定义域为D的函数f(x),若存在区间M=[a,b]⊆D(a<b),使得{y|y=f(x),x∈M}=M,则称区间M为函数f(x)的“等值区间”.给出下列三个函数:①
; ②f(x)=x3; ③f(x)=log2x+1
则存在“等值区间”的函数的个数是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
下列说法中正确的是:
①函数
的定义域是
;
②方程
有一个正实根,一个负实根,则
;
③
是第二象限角,
是第一象限角,则
>
;
④函数
,
恒过定点(3,-2);
⑤若
则
的值为2
⑥若定义在R上的函数
满足:对任意
,则
为奇函数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com