【题目】 的单调递减区间为 .
【答案】[kπ﹣ ,kπ+ ](k∈Z)
【解析】解:令t=sinxcosx+cos2x,则y= 单调递减, t=sinxcosx+cos2x= + sin(2x+ )>0,
令2kπ﹣ ≤2x+ ≤2kπ+
解得kπ﹣ ≤x≤kπ+ ,单调递增区间为[kπ﹣ ,kπ+ ](k∈Z),
∴ 的单调递减区间为[kπ﹣ ,kπ+ ](k∈Z),
所以答案是[kπ﹣ ,kπ+ ](k∈Z).
【考点精析】解答此题的关键在于理解复合函数单调性的判断方法的相关知识,掌握复合函数f[g(x)]的单调性与构成它的函数u=g(x),y=f(u)的单调性密切相关,其规律:“同增异减”,以及对正弦函数的单调性的理解,了解正弦函数的单调性:在上是增函数;在上是减函数.
科目:高中数学 来源: 题型:
【题目】已知直线 ,若存在实数 使得一条曲线与直线 由两个不同的交点,且以这两个交点为端点的线段长度恰好等于 ,则称此曲线为直线 的“绝对曲线”.下面给出的四条曲线方程:
① ;② ;③ ;④ .
其中直线 的“绝对曲线”的条数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】是否存在一个等比数列{an}同时满足下列三个条件:①a1+a6=11且a3a4= ;②an+1>an(n∈N*);③至少存在一个m(m∈N*且m>4),使得 am﹣1 , am2 , am+1+ 依次构成等差数列?若存在,求出通项公式;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题 “存在”,命题:“曲线表示焦点在轴上的椭圆”,命题 “曲线表示双曲线”
(1)若“且”是真命题,求实数的取值范围;
(2)若是的必要不充分条件,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若一个四位数的各位数字相加和为,则称该数为“完美四位数”,如数字“”.试问用数字组成的无重复数字且大于的“完美四位数”有( )个
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数, ().
(1)求函数的单调增区间;
(2)当时,记,是否存在整数,使得关于的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别与单位圆相交于A,B两点,已知A,B的横坐标分别为, .求:
(1)tan(α+β)的值;
(2)α+2β的大小.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com