精英家教网 > 高中数学 > 题目详情

【题目】已知直线 ,若存在实数 使得一条曲线与直线 由两个不同的交点,且以这两个交点为端点的线段长度恰好等于 ,则称此曲线为直线 的“绝对曲线”.下面给出的四条曲线方程:

.

其中直线 的“绝对曲线”的条数为(

A. 1 B. 2 C. 3 D. 4

【答案】C

【解析】依题意可知,直线恒过定点.对于①函数的图象关于直线对称,如图所示,所以直线与其只能有一个交点,故满足题意的不存在,故① 不符合题意;

对于② 方程的图象为以点为圆心的圆因此直线过圆心,直线与圆两个交点所组成的线段长为,故当直线直线斜率的绝对值等于截线段长度,即存在,故② 符合题意;对于③ 此曲线为一个椭圆,定点在椭圆上,将直线方程代入可得所以若曲线是直线的绝对曲线”,则,即,化简得,令,则问题转化为存在,使得成立,因为,且为连续函数,所以在区间存在零点,即存在实根故③符合题意;对于首先明确两个极限情况: 此时斜率绝对值无穷大,截线段长度为有限值; ,此时斜率绝对值为零,且当斜率绝对值趋于零时截线段长度趋于无穷大;若将直线绕点逆时针旋转可见斜率绝对值变化趋势为由正无穷单调递减至零,截线段长度变化趋势为从一有限值趋于正无穷(变化过程不一定单调),设为斜率绝对值变化情况, 为线段长度变化情况 为转动角度,做出示意图如下

必存在某一转动角度使得与图象相交,即存在使得直线斜率的绝对值等于截线段长度,故④符合题意,直线 的“绝对曲线”的条数为4故选C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】方程 在(0,2π)内有相异两解α,β,则α+β=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏。将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,随即从中抽取了100名选手进行调查,下面是根据调查结果绘制的选手等级人数的条形图.

(Ⅰ)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的列联表,并据此资料你是否有95%的把握认为选手成绩“优秀”与文化程度有关?

注:其中.

(Ⅱ)在优秀等级的选手中取6名,依次编号为1,2,3,4,5,6,在良好等级的选手中取6名,依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为,在选出的6名良好等级的选手中任取一名,记其编号为,求使得方程组有唯一一组实数解的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C ab>0)的焦距为,且椭圆C过点A1 ),

(Ⅰ)求椭圆C的方程;

(Ⅱ)若O是坐标原点,不经过原点的直线L:y=kx+m与椭圆交于两不同点P(x1,y1),Q(x2,y2),且y1y2=k2x1x2,求直线L的斜率k;

(Ⅲ)在(Ⅱ)的条件下,求△OPQ面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:区域A是正方形OABC(含边界),区域B是三角形ABC(含边界)。

(Ⅰ)向区域A随机抛掷一粒黄豆,求黄豆落在区域B的概率;

(Ⅱ)若x,y分别表示甲、乙两人各掷一次骰子所得的点数,求点(xy)落在区域B的概率;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}的前n项和为Sn , 且满足Sn=2﹣an , n=1,2,3,….
(1)求数列{an}的通项公式;
(2)若数列{bn}满足b1=1,且bn+1=bn+an , 求数列{bn}的通项公式;
(3)设cn=n(3﹣bn),求数列{cn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足an+1= an+t,a1= (t为常数,且t≠ ).
(1)证明:{an﹣2t}为等比数列;
(2)当t=﹣ 时,求数列{an}的前几项和最大?
(3)当t=0时,设cn=4an+1,数列{cn}的前n项和为Tn , 若不等式 ≥2n﹣7对任意的n∈N*恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(14分)一根直木棍长为6m,现将其锯为2段.

(1)若两段木棍的长度均为正整数,求恰有一段长度为2m的概率;

(2)求锯成的两段木棍的长度均大于2m的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 的单调递减区间为

查看答案和解析>>

同步练习册答案