(本题满分14分)
已知函数,
(1)求的最小值;
(2)若对所有都有,求实数的取值范围.
解:(1)的定义域为, 的导数. …………………………2分
令,解得;令,解得.
从而在单调递减,在单调递增.
所以,当时,取得最小值. …………………………………… 6分
(2)解法一:依题意,得在上恒成立,
即不等式对于恒成立 . …………………………………………………8分
令, 则. ……………………………………10分
当时,因为,
故是上的增函数, 所以的最小值是,……………………… 13分
所以的取值范围是. …………………………………………………………………14分
解法二:令,则,
① 若,当时,,
故在上为增函数,
所以,时,,即;…………………………… 10分
② 若,方程的根为,
此时,若,则,故在该区间为减函数.
所以时,,
即,与题设相矛盾.
综上,满足条件的的取值范围是. ……………………………………………… 14分
【解析】略
科目:高中数学 来源: 题型:
π |
3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,为上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求实数m的值
(Ⅱ)若ACRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点是⊙:上的任意一点,过作垂直轴于,动点满足。
(1)求动点的轨迹方程;
(2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数.
(1)求函数的定义域;
(2)判断的奇偶性;
(3)方程是否有根?如果有根,请求出一个长度为的区间,使
;如果没有,请说明理由?(注:区间的长度为).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com