精英家教网 > 高中数学 > 题目详情
已知命题“若f(x)=m2x2,g(x)=mx2-2m,则集合{x|f(x)<g(x),
1
2
≤x≤1}=∅
”是假命题,则实数m的取值范围是______.
∵f(x)=m2x2,g(x)=mx2-2m,
又∵{x|f(x)<g(x),
1
2
≤x≤1}=∅
”是假命题
∴m2x2<mx2-2m,即(m2-m)x2+2m<0在
1
2
≤x≤1
上有解
令h(x)=(m2-m)x2+2m,
m2-m>0
h(
1
2
)=
m2+7m
4
>0
或,
m2-m<0
h(1)=m2+m<0

解可得m>1或m<-7
故答案为:m>1或m<-7
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知命题P:f(x)=x3-ax在(2,+∞)为增函数,命题q:g(x)=x2-ax+3在(1,2)为减函数.若p或q为真,p且q为假,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:f(x)=
1-2xm
在区间(0,+∞)上是减函数;命题q:不等式(x-1)2>m的解集为R.若命题“p∨q”为真,命题“p∧q”为假,则实数m的取值范围是
m≠0
m≠0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:f(x)=
log3a-1x
在区间(0,+∞)上是增函数;命题q:关于x的不等式x2-2ax+1>0的解集为R,若pⅤq为真,若p∧q为假,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:f(x)=
1-2mx
在区间(0,+∞)上是减函数;命题q:不等式(x-1)2>m的解集为R.若命题“p∨q”为真,命题“p∧q”为假,求实数m的取值范围是.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:f(x)=x2-ax+1在[-1,1]上不具有单调性;命题q:?x0∈R,使得x02+2ax0+4a=0
(Ⅰ)若p∧q为真,求a的范围.
(Ⅱ)若p∨q为真,求a的范围.

查看答案和解析>>

同步练习册答案