精英家教网 > 高中数学 > 题目详情
(2012•闵行区一模)设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0),R1,R2是它实轴的两个端点,l是其虚轴的一个端点.已知其一条渐近线的一个方向向量是(1,
3
),△lR1R2的面积是
3
,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且
OA
OB

(1)求双曲线C的方程;
(2)求点P(k,m)的轨迹方程,并指明是何种曲线.
分析:(1)根据渐近线的一个方向向量是(1,
3
),可得双曲线的渐近线方程为y=±
3
x,从而有b=
3
a,c=2a,利用△lR1R2的面积是
3
,即可求得双曲线C的方程;
(2)直线AB:y=kx+m与双曲线x2-
y2
3
=1
联立消去y得(3-k2)x2-2kmx-m2-3=0,利用韦达定理及
OA
OB
知x1x2+y1y2=0,即可求得点P的轨迹方程.
解答:解:(1)由题意,渐近线的一个方向向量是(1,
3
),∴双曲线的渐近线方程为y=±
3
x,则有b=
3
a,c=2a
又△lR1R2的面积是
3
,故
1
2
×2a×b=
3
,得a=1,b=
3
,c=2(3分)
所以双曲线C的方程为x2-
y2
3
=1
.(6分)
(2)设A(x1,y1),B(x2,y2),直线AB:y=kx+m与双曲线x2-
y2
3
=1
联立消去y得(3-k2)x2-2kmx-m2-3=0
由题意3-k2≠0,且
△>0
x1+x2=
2km
3-k2
x1x2=
-m2-3
3-k2
 (4分)
又由
OA
OB
知x1x2+y1y2=0
而x1x2+y1y2=x1x2+k2x1x2+km(x1+x2)+m2
所以
m2+3
k2-3
+k2×
m2+3
k2-3
+km×
2km
3-k2
+m2=0
化简得2m2-3k2=3①
由△>0可得k2<m2+3②
由①②可得2m2-3k2=3                  (6分)
故点P的轨迹方程是2y2-3x2=3(x≠±
3
),其轨迹是双曲线       (8分)
点评:本题考查双曲线的标准方程,考查双曲线的几何性质,考查直线与双曲线的位置关系,考查向量知识的运用,解题的关键是直线与双曲线方程联立,利用韦达定理进行求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•闵行区一模)设等差数列{an}的首项及公差均是正整数,前n项和为Sn,且a1>1,a4>6,S3≤12,则a2012=
4024
4024

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)在一圆周上给定1000个点.(如图)取其中一点标记上数1,从这点开始按顺时针方向数到第二个点标记上数2,从标记上2的点开始按顺时针方向数到第三个点标记上数3,继续这个过程直到1,2,3,…,2012都被标记到点上,圆周上这些点中有些可能会标记上不止一个数,在标记上2012的那一点上的所有标记的数中最小的是
12
12

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)设x1、x2是关于x的方程x2+mx+
1+m2
=0
的两个不相等的实数根,那么过两点A(x1
x
2
1
)
B(x2
x
2
2
)
的直线与圆x2+y2=1的位置关系是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)设双曲线C:
x2
a2
-
y2
b2
=1(a,b>0)
的虚轴长为2
3
,渐近线方程是y=±
3
x
,O为坐标原点,直线y=kx+m(k,m∈R)与双曲线C相交于A、B两点,且
OA
OB

(1)求双曲C的方程;
(2)求点P(k,m)的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•闵行区一模)将边长分别为1、2、3、…、n、n+1、…(n∈N*)的正方形叠放在一起,形成如图所示的图形,由小到大,依次记各阴影部分所在的图形为第1个、第2个、…、第n个阴影部分图形.容易知道第1个阴影部分图形的周长为8.设前n个阴影部分图形的周长的平均值为f(n),记数列{an}满足an=
f(n),当n为奇数
f(an-1) ,当n为偶数

(1)求f(n)的表达式;
(2)写出a1,a2,a3的值,并求数列{an}的通项公式;
(3)记bn=an+s(s∈R),若不等式
.
bn+1bn+1
bn+2bn
.
>0
有解,求s的取值范围.

查看答案和解析>>

同步练习册答案