精英家教网 > 高中数学 > 题目详情
设函数,区间M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有( )
A.1个
B.3个
C.2个
D.0个
【答案】分析:由已知中函数,我们易判断出函数的单调性及奇偶性,进而根据M=N成立时,f(a)=a且f(b)=b,解方程,进而可由列举法,求出答案.
解答:解:∵函数为奇函数,
且函数在R为增函数
若M=N成立
∴f(a)=a且f(b)=b

解得x=0,或x=±1
故使M=N成立的实数对(a,b)有(-1,0),(-1,1),(0,1)三组
故选B
点评:本题考查的知识点是集合关系中的参数取值问题,函数的值域,函数单调性的应用,其中根据已知中函数的解析式求确定出函数的单调性,并由M=N成立得到f(a)=a且f(b)=b,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源:2011-2012学年江苏省连云港市东海高级中学高一(上)第二次月考数学试卷(解析版) 题型:填空题

设函数,区间M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有    个.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年浙江省温州市任岩松中学高三(上)10月月考数学试卷(解析版) 题型:选择题

设函数,区间M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有( )
A.1个
B.3个
C.2个
D.0个

查看答案和解析>>

科目:高中数学 来源:2010年广东省佛山市南海中学等六校高三联考数学试卷(理科)(解析版) 题型:解答题

设函数,区间M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有    个.

查看答案和解析>>

科目:高中数学 来源:2009-2010学年江苏省南通市四星级高中高三(下)月考数学试卷(解析版) 题型:解答题

设函数,区间M=[a,b](其中a<b)集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有    个.

查看答案和解析>>

同步练习册答案