科目:高中数学 来源: 题型:
| x2 |
| 12 |
| y2 |
| 4 |
查看答案和解析>>
科目:高中数学 来源:2012-2013学年福建省漳州市七校高三第三次联考理科数学试卷(解析版) 题型:解答题
已知椭圆
的中心在原点,焦点在
轴上,离心率为
,它的一个顶点恰好是抛物线
的焦点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
与椭圆
相切
,直线
与
轴交于点
,当
为何值时
的面积有最小值?并求出最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分12分)
已知椭圆
的中心在原点,焦点在
轴上,左右焦点分别为
,且
,点
)在椭圆
上.
(1)求椭圆
的方程;
(2)过
的直线
与椭圆
相交于
、
两点,且△
的面积
,求以
为圆心且与直线
相切的圆的方程.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省高三下学期模拟冲刺考试文科数学试卷(解析版) 题型:解答题
已知中心在原点,焦点在
轴上的椭圆
的离心率为
,且经过点![]()
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)是否存过点
(2,1)的直线
与椭圆
相交于不同的两点
,满足
?若存在,求出直线
的方程;若不存在,请说明理由.
【解析】第一问利用设椭圆
的方程为
,由题意得![]()
解得![]()
第二问若存在直线
满足条件的方程为
,代入椭圆
的方程得
.
因为直线
与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以![]()
所以
.解得。
解:⑴设椭圆
的方程为
,由题意得![]()
解得
,故椭圆
的方程为
.……………………4分
⑵若存在直线
满足条件的方程为
,代入椭圆
的方程得
.
因为直线
与椭圆
相交于不同的两点
,设
两点的坐标分别为
,
所以![]()
所以
.
又
,
因为
,即
,
所以![]()
.
即
.
所以
,解得
.
因为A,B为不同的两点,所以k=1/2.
于是存在直线L1满足条件,其方程为y=1/2x
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com