【题目】已知定义在[0,1]上的函数满足:①f(0)=f(1)=0,②对于所有x,y∈[0,1]且x≠y有|f(x)﹣f(y)|<
|x﹣y|.若当所有的x,y∈[0,1]时,|f(x)﹣f(y)|<k,则k的最小值为 .
【答案】![]()
【解析】解:依题意,定义在[0,1]上的函数y=f(x)的斜率|m|
,
依题意,m>0,构造函数f(x)=
,满足f(0)=f(1)=0,|f(x)﹣f(y)|<
|x﹣y|.
当x∈[0,
],且y∈[0,
]时,|f(x)﹣f(y)|=|kx﹣ky|=k|x﹣y|≤k|
|=k×
,
当x∈[0,
],且y∈[
,1]时,|f(x)﹣f(y)|=|kx﹣(k﹣ky)|=|k(x+y)﹣k|≤|k(1+
)﹣k|=k×
,
当x∈[
,1],且y∈[0,
]时,同理可得,|f(x)﹣f(y)|
,
当x∈[
,1],且y∈[
,1]时,|f(x)﹣f(y)|=|(k﹣kx)﹣(k﹣ky)|=k|x﹣y|≤k×(1﹣
)=
.
综上所述,对所有x,y∈[0,1],|f(x)﹣f(y)|
,
∵对所有x,y∈[0,1],|f(x)﹣f(y)|<k恒成立,
∴k≥
,
即k的最小值为
.
故答案为:
.
构造函数,分情况讨论,求出恒成立时满足的条件,可得k的取值。
科目:高中数学 来源: 题型:
【题目】如图,在直四棱柱ABCD﹣A1B1C1D1中,底面ABCD为等腰梯形,AB∥CD,AB=4,BC=CD=2,AA1=2,E、F、G分别是棱A1B1、AB、A1D1的中点.![]()
(Ⅰ)求证:GE⊥平面FCC1;
(Ⅱ)求二面角B﹣FC1﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面四边形ABCD中,已知∠A=
,∠B=
,AB=6.在AB边上取点E使得BE=1,连结EC,ED,若∠CED=
,EC=
.则CD= . ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a,b是正实数,设函数f(x)=xlnx,g(x)=﹣a+xlnb.
(Ⅰ)设h(x)=f(x)﹣g(x),求h(x)的单调区间;
(Ⅱ)若存在x0 , 使x0∈[
,
]且f(x0)≤g(x0)成立,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x3
(1﹣a)x2﹣3ax+1,a>0.
(1)试讨论f(x)(x≥0)的单调性;
(2)证明:对于正数a,存在正数p,使得当x∈[0,p]时,有﹣1≤f(x)≤1;
(3)设(1)中的p的最大值为g(a),求g(a)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
=1(a>b>0)经过点(
,﹣
),且椭圆的离心率e=
.
(1)求椭圆的方程;
(2)过椭圆的右焦点F作两条互相垂直的直线,分别交椭圆于点A,C及B,D,设线段AC,BD的中点分别为P,Q.求证:直线PQ恒过一个定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的首项a1=m,其前n项和为Sn , 且满足Sn+Sn+1=3n2+2n,若对n∈N+ , an<an+1恒成立,则m的取值范围是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数h(x)=﹣|x﹣3|.
(1)若h(x)﹣|x﹣2|≤n对任意的x>0恒成立,求实数n的最小值;
(2)若函数f(x)=
,求函数g(x)=f(x)+h(x)的值域.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com