精英家教网 > 高中数学 > 题目详情
已知
x+y+3≥0
2x-y≤0
x-y+1≥0
,则x2+y2-2x+4y+15的最大值为
 
分析:先根据约束条件画出可行域,再利用几何意义求最值,z=x2+y2-2x+4y+15=(x-1)2+(y+2)2+10表示可行域动点S到点A(1,-2)的距离的平方加上10,只需求出可行域内的动点到点(1,-2)的距离最大值即可.
解答:精英家教网解:z=x2+y2-2x+4y+15=(x-1)2+(y+2)2+10
注意到目标函数所表示动点S到点A(1,-2)的距离的平方加上10,
作出可行域.如图.
易知当S在B点时取得目标函数的最大值,
可知B点的坐标为(-1,-2),
代入目标函数中,可得zmax=12+22-2×(-1)+4×(-2)+15=14.
故答案为:14.
点评:本题属于线性规划中的延伸题,对于可行域不要求线性目标函数的最值,而是求可行域内的点与原点之间的距离问题.解答的关键还是结合图形的几何意义求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

本题有(I)、(II)、(III)三个选作题,每题7分,请考生任选两题作答,满分14分.如果多做,则按所做的前两题记分,作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知a∈R,矩阵P=
02
-10
,Q=
01
a0
,若矩阵PQ对应的变换把直线l1:x-y+4=0变为直线l2:x+y+4=0,求实数a的值.
(2)选修4-4:坐标系与参数方程
在极坐标系中,求圆C:ρ=2上的点P到直线l:ρ(cosθ+
3
sinθ)=6
的距离的最小值.
(3)选修4-5:不等式选讲
已知实数x,y满足x2+4y2=a(a>0),且x+y的最大值为5,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(-1,2)和点B(3,4),则线段AB的垂直平分线l的点法向式方程是
2(x-1)+(y-3)=0
2(x-1)+(y-3)=0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,且x>0时,f(x)=(x-2)(x-3)+0.02,则关于y=f(x)在R上零点的说法正确的是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知下表为函数f(x)=ax3+cx+d部分自变量取值及其对应函数值,为了便于研究,相关函数值取非整数值时,取值精确到0.01.
x -0.61 -0.59 -0.56 -0.35 0 0.26 0.42 1.57 3.27
y 0.07 0.02 -0.03 -0.22 0 0.21 0.20 -10.04 -101.63
根据表中数据,研究该函数的一些性质:
(1)判断f(x)的奇偶性,并证明;
(2)判断f(x)在[0.55,0.6]上是否存在零点,并说明理由.

查看答案和解析>>

科目:高中数学 来源:2012年河南省开封高中高考数学5月押题卷(文科)(解析版) 题型:选择题

已知f(x)是定义在R上的奇函数,且x>0时,f(x)=(x-2)(x-3)+0.02,则关于y=f(x)在R上零点的说法正确的是( )
A.有4个零点其中只有一个零点在(-3,-2)内
B.有4个零点,其中两个零点在(-3,-2)内,两个在(2,3)内
C.有5个零点都不在(0,2)内
D.有5个零点,正零点有一个在(0,2)内,一个在(3,+∞)内

查看答案和解析>>

同步练习册答案