精英家教网 > 高中数学 > 题目详情
已知点P的坐标(x,y)满足:
x-4y+3≤0
3x+5y≤25
x-1≥0.
及A(2,0),则
OA
OP
(O为坐标原点)的最大值是
10
10
_
/
/
分析:确定可行域,利用向量数量积公式,可得目标函数,结合可行域,即可得到结论.
解答:解:可行域,如图所示
∵P(x,y),A(2,0),
OA
OP
=2x,
x-4y+3=0
3x+5y=25
,可得
x=5
y=2

∴x的最大值为5,
OA
OP
(O为坐标原点)的最大值是10
故答案为:10
点评:本题考查线性规划知识,考查数形结合的数学思想,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知点P的坐标(x,y)满足
x+y≤4
y≥x
x≥1
过点P的直线l与圆C:x2+y2=14交于M、N两点,那么|MN|的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P的坐标(x,y)满足
x+y≤4
y≥x
x≥1
,过点P的直线l与圆C:x2+y2=16相交于A、B两点,则|AB|的最小值为
2
6
2
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P的坐标(x,y)满足
2x+y-6≥0
x-y≤0
x+2y-9≤0
,过点P的直线l与圆C:x2+y2=25相交于A、B两点,则|AB|的最小值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P的坐标(x,y)满足
x+y≤4
y≥x 
x≥1 
,过点P的直线l与圆C:x2+y2=14交于A、B两点,求|AB|最小值时的直线AB的方程
x+3y-10=0
x+3y-10=0

查看答案和解析>>

同步练习册答案