精英家教网 > 高中数学 > 题目详情

已知椭圆>b>的离心率为且椭圆的一个焦点与抛物线的焦点重合,斜率为的直线过椭圆的上焦点且与椭圆相交于P,Q两点,线段PQ的垂直平分线与y轴相交于点M(0,m).

(1)求椭圆的标准方程;

(2)求m的取值范围;

(3)试用m表示△MPQ的面积S,并求面积S的最大值.

 

【答案】

(1)(2)0<(3)时,△MPQ的面积S有最大值

【解析】本试题主要是考查了圆锥曲线方程的求解,以及直线与椭圆的位置关系的综合运用以及三角形的面积公式的求解运用。

(1)利用待定系数法,根据已知中椭圆的性质得到关于a,b,c的关系式,然后得到椭圆的方程。

(2)设出直线方程,然后与椭圆联立,得到关于x的一元二次方程,结合韦达定理和中垂线的表示,得到参数m与k的关系式,这样可以得到求解范围。

(3)利用点到直线的距离公式和弦长公式,来表示三角形的面积,以及运用面积函数求解导数,判定打掉性确定最值

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•淮南二模)已知椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)与双曲4x2-
4
3
y2=1有相同的焦点,且椭C的离心e=
1
2
,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆),过椭圆中心O作互相垂直的两条弦AC、BD,设点A、B的离心角分别为,求的取值范围。

查看答案和解析>>

科目:高中数学 来源:2012年全国普通高等学校招生统一考试理科数学(山东卷解析版) 题型:选择题

已知椭圆的离心学率为.双曲线的渐近线与椭圆有四个交点,以这四个焦点为顶点的四边形的面积为16,则椭圆的方程为

(A)     (B) 

(C)     (D)

 

查看答案和解析>>

科目:高中数学 来源:2013届福建省高二第一学期期末考试理科数学试卷 题型:解答题

已知椭圆E的下焦点为、上焦点为,其离心 率。过焦点F2且与轴不垂直的直线l交椭圆于AB两点。

(1)求实数的值;  

(2)求DABOO为原点)面积的最大值.

 

查看答案和解析>>

科目:高中数学 来源:2012年安徽省淮南市高考数学二模试卷(理科)(解析版) 题型:解答题

已知椭圆C:+=1,(a>b>0)与双曲4x2-y2=1有相同的焦点,且椭C的离心e=,又A,B为椭圆的左右顶点,M为椭圆上任一点(异于A,B).
(1)求椭圆的方程;
(2)若直MA交直x=4于点P,过P作直线MB的垂线x轴于点Q,Q的坐标;
(3)求点P在直线MB上射R的轨迹方程.

查看答案和解析>>

同步练习册答案