已知函数,().
(1)求函数的单调区间;
(2)求证:当时,对于任意,总有成立.
(1)当时,的单调递增区间为,单调递减区间为,;当时,的单调递增区间为,,单调递减区间为;(2)详见解析.
解析试题分析:(1)对于含参数的函数的单调区间,只需在定义域内考虑导函数符号,同时要注意分类讨论标准的确定.先求,分母恒正,只需考虑分子二次函数的符号,所以讨论开口方向即可;(2)由于是独立的两个变量,故分别代表,的任意两个函数值,要使得恒成立,只需证明,分别利用导数求其最大值和最小值,从而得证,该题入手,可能很多同学困惑于这两个变量的处理,从而造成了解题障碍.
科目:高中数学
来源:
题型:解答题
定义在上的函数同时满足以下条件:
科目:高中数学
来源:
题型:解答题
(14分)己知函数f (x)=ex,xR
科目:高中数学
来源:
题型:解答题
已知函数(k为常数,e=2.71828……是自然对数的底数),曲线在点处的切线与x轴平行。
科目:高中数学
来源:
题型:解答题
已知函数.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
试题解析:(Ⅰ)函数的定义域为,.
当时,
当变化时,,的变化情况如下表:
当时, 0 0 ↘ ↗ ↘
当变化时,,的变化情况如下表:
①在(0,1)上是减函数,在(1,+∞)上是增函数;
②是偶函数;
③在x=0处的切线与直线y=x+2垂直.
(1)求函数=的解析式;
(2)设g(x)=,若存在实数x∈[1,e],使<,求实数m的取值范围.
(1)求 f (x)的反函数图象上点(1,0)处的切线方程。
(2)证明:曲线y=f(x)与曲线y=有唯一公共点;
(3)设,比较与的大小,并说明理由。
(1)求k的值;
(2)求的单调区间;
(3)设,其中为的导函数,证明:对任意,。
(I)若,求函数的单调区间;
(Ⅱ)求证:
(Ⅲ)若函数的图象在点处的切线的倾斜角为,对于任意的,函数是的导函数)在区间上总不是单调函数,求的取值范围。
版权声明:本站所有文章,图片来源于网络,著作权及版权归原作者所有,转载无意侵犯版权,如有侵权,请作者速来函告知,我们将尽快处理,联系qq:3310059649。
ICP备案序号: 沪ICP备07509807号-10 鄂公网安备42018502000812号