精英家教网 > 高中数学 > 题目详情
下面给出五个命题:
①已知平面//平面是夹在间的线段,若//,则
是异面直线,是异面直线,则一定是异面直线;
③三棱锥的四个面可以都是直角三角形。
④平面//平面//,则
⑤三棱锥中若有两组对棱互相垂直,则第三组对棱也一定互相垂直;
其中正确的命题编号是             (写出所有正确命题的编号)
①③④⑤

试题分析:①:由//确定一平面,其与平面、平面的交线为因为平面//平面,所以因此四边形为平行四边形,所以,选①
②:本题中结论为“一定”,可举反例,如正方体是异面直线,是异面直线,但不是异面直线,不选②
③:本题中结论为“可以”,可举正例,如正方体中三棱锥,其四个面都是直角三角形,选③
④:本题证明较难,需用同一法,但直观判断简单.过点P作平面交平面、平面又由//线面平行性质定理可得因为在同一平面内,过一点与同一直线平行的直线只有一条,所以直线与直线重合,而直线在平面内,所以,选④
⑤:本题难点在需作一辅助垂线,即底面上的高.设三棱锥求证过点则易得所以为三角形的垂心,即因此选⑤
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

在四棱锥中,底面是正方形,交于点底面的中点.

(1)求证:平面
(2)若,在线段上是否存在点,使平面?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱柱的底面是边长为的正三角形,侧棱垂直于底面,侧棱长为,D为棱的中点。

(Ⅰ)求证:平面
(Ⅱ)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示,在圆锥PO中, PO=,?O的直径AB=2, C为弧AB的中点,D为AC的中点.

(1)求证:平面POD^平面PAC;
(2)求二面角B—PA—C的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,⊥底面,四边形是直角梯形,.

(Ⅰ)求证:平面⊥平面
(Ⅱ)若二面角的余弦值为,求.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下面四个命题:
①“直线a∥直线b”的充分条件是“直线a平行于直线b所在的平面”;
②“直线l⊥平面α”的充要条件是“直线垂直平面α内无数条直线”;
③“直线a,b不相交”的必要不充分条件是“直线a,b为异面直线”;
④“平面α∥平面β”的必要不充分条件是“平面α内存在不共线三点到平面β的距离相等”.
其中为真命题的序号是(  )
A.①②B.②③C.③④D.④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,在长方形ABCD中,AB=2,BC=1,EDC的中点,F为线段EC上一动点.现将△AFD沿AF折起,使平面ABD⊥平面ABC.在平面ABD内过点DDKABK为垂足.设AKt,则t的取值范围是________.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知正四棱柱的外接球直径为,底面边长,则侧棱与平面所成角的正切值为_________。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,正方体中,,点的中点,点上,若,则线段的长度等于______

查看答案和解析>>

同步练习册答案